Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried o...In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.展开更多
Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of ...Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of red clay or cement for CWP satisfies the subgrade requirements for ordinary railway,but cannot meet the requirements of immediate strength and long-term post-construction settlement of high-speed railway at the same time.A series of experimental investigations were undertaken for the blended CWP soils,with three additives used.The first additive was red clay,the second was cement and the third was a combination of both red clay and cement at various portions.Results of consolidation test and shear strength test carried out for the treated CWP soils show that:1)The effect of cement on improving the compression modulus of CWP is much better than that of red clay;2)The settlement of an embankment of 10 m high formed by blended soil of CWP with 3%cement can be controlled within 15 mm,while the settlement will be 25.15 mm for the same embankment of blended soil of CWP with 40%red clay;3)The shear strength and ultimate bearing capacity of CWP improved by red clay are much better than those of 5%cement;4)The ultimate bearing capacity of CWP improved by 40%red clay is 3.42 times of that by 3%cement and 2.95 times by 5%cement.Furthermore,the bearing capacity of CWP when improved by red clay can meet railway subgrade requirements immediately after compaction,while cement improved CWP needs a curing time of 1 day or longer.This is an impediment to rapid construction process.The improvement mechanism of red clay is mainly filling effect and grading improvement effect,while the improvement mechanism of cement is mainly hardening reaction,which produces high strength material to cement.It is found that 40%red clay and 3%cement treated CWP,which is considered to be optimum,can meet the subgrade requirements of both immediate bearing capacity and long-term post-construction settlement for the high-speed railway.展开更多
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
基金Project(51178419)supported by the National Natural Science Foundation of China
文摘In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52068027,51668018,51768021).
文摘Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of red clay or cement for CWP satisfies the subgrade requirements for ordinary railway,but cannot meet the requirements of immediate strength and long-term post-construction settlement of high-speed railway at the same time.A series of experimental investigations were undertaken for the blended CWP soils,with three additives used.The first additive was red clay,the second was cement and the third was a combination of both red clay and cement at various portions.Results of consolidation test and shear strength test carried out for the treated CWP soils show that:1)The effect of cement on improving the compression modulus of CWP is much better than that of red clay;2)The settlement of an embankment of 10 m high formed by blended soil of CWP with 3%cement can be controlled within 15 mm,while the settlement will be 25.15 mm for the same embankment of blended soil of CWP with 40%red clay;3)The shear strength and ultimate bearing capacity of CWP improved by red clay are much better than those of 5%cement;4)The ultimate bearing capacity of CWP improved by 40%red clay is 3.42 times of that by 3%cement and 2.95 times by 5%cement.Furthermore,the bearing capacity of CWP when improved by red clay can meet railway subgrade requirements immediately after compaction,while cement improved CWP needs a curing time of 1 day or longer.This is an impediment to rapid construction process.The improvement mechanism of red clay is mainly filling effect and grading improvement effect,while the improvement mechanism of cement is mainly hardening reaction,which produces high strength material to cement.It is found that 40%red clay and 3%cement treated CWP,which is considered to be optimum,can meet the subgrade requirements of both immediate bearing capacity and long-term post-construction settlement for the high-speed railway.