The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience ...The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.展开更多
Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affe...Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.展开更多
The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is pres...The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is presented. Taking Shanghai central district as background, a system for hazard analysis of the post-earthquake fire and auxiliary decision-against fire is developed.展开更多
Among the triggering factors of postearthquake bedrock landslides, rainfall plays an important role. However, with slope variation, the mechanism of its effects on the failure of rock landslides is not dear. Here, fro...Among the triggering factors of postearthquake bedrock landslides, rainfall plays an important role. However, with slope variation, the mechanism of its effects on the failure of rock landslides is not dear. Here, from the viewpoint of fracture mechanics, and based on post-earthquake conditions, the mechanisms of crack propagation, water infiltration and development of the sliding surface were investigated. Then, according to the upper boundary theorem, the effects of water infiltrated into fractures on the stability of rock slopes were analyzed quantitatively. Finally, an example is presented to verify the theory. The results show that the propagation and coalescence of cracks and the lubrication of incipient sliding surfaces are the main causes of the failure of post-earthquake rock landslides in response to rainfall.展开更多
Natural disasters provide an acute image of how man-made technologies are a cause of conflict when it comes to nature. It is man versus wild in its true means. The nature lets us grow and increase our settlements. We ...Natural disasters provide an acute image of how man-made technologies are a cause of conflict when it comes to nature. It is man versus wild in its true means. The nature lets us grow and increase our settlements. We encroach on other animals' territories and it is only when the environment's patience runs out that it retaliates in forms of natural disasters. These disasters affect numerous lives and kill a lot ofhnmans. This is the main reason why we require more stable structures and preventive measures to battle the wrath of the nature. Rescue and search operations are conducted by many different government and private agencies including NGOs. These operations aim at providing the required relief and supplies after the disaster. Injured people need to be treated. People in dangerous zones need to be evacuated. Help is needed in many forms. Out of the many natural disasters, this paper will focus on the occurrence of earthquakes. Severe earthquakes destroy buildings and structures like roads, bridges etc. and wreak havoc in the community. Earthquakes largely damage all human constructions, including houses. This is the reason why a reconstruction program for dwellings and housings is of utmost importance. A home is only secondary to basic needs such as food and water. A well-planned strategy is important when it comes to launching a post-earthquake reconstruction program. The strategy should be reasonable and should consider the best interests of everyone affected; self-help and imported fabrication should play no part in the decision-making procedures. Creating awareness, physically demonstrating options and delivering are the three steps for the success of reconstruction programs. The extent of affected area and the magnitude of earthquakes are variable in nature and it is on these two aspects that the reconstruction strategy is devised. Technical aspects are focused towards the development of the affected areas and conceptual design of surrounding neighborhoods. It also aims at identifying seminars and programs based on easy financing for a new home. Along with these, review processes are conducted for the analysis of new residential needs based on optimizing the use of available land for planning and development. The paper discusses the construction of housing and resettlements as prioritized activities that must be undertaken post an earthquake. Earthquakes physically only destroy structures and buildings but for the people affected, they destroy lives, jobs, companies, sources of food and the sense of safety and traumatize the ones who come out alive.展开更多
The 2008 Wenchuan earthquake in Sichuan Province caused significant damage to Dujiangyan irrigation system,which is one of the world's cultural heritages.After the earthquake,the Chinese government launched the po...The 2008 Wenchuan earthquake in Sichuan Province caused significant damage to Dujiangyan irrigation system,which is one of the world's cultural heritages.After the earthquake,the Chinese government launched the post-earthquake emergency conservation project for cultural heritages.The Fulong Taoist Temple in Dujiangyan was the first to adopt the conservation project.The earthquake-damaged Fulong Taoist Temple was restored in just 18 months.This article reviews the entire emergency conservation project of Fulong Taoist Temple in Dujiangyan after the earthquake,discusses the restoration principles and technical methods used in this project,and uses the comments of the Asia-Pacific Heritage Protection Award to expound the historical significance of this protection project.展开更多
Experience from past earthquakes has demonstrated the need to account for design goals beyond safety,known as functional recovery objectives,in the interest of community resilience.Frameworks have been proposed in the...Experience from past earthquakes has demonstrated the need to account for design goals beyond safety,known as functional recovery objectives,in the interest of community resilience.Frameworks have been proposed in the literature to assess the post-earthquake functional recovery of a building,but without accounting for utility systems’disruption,which may be a key contributor to determining when a building is functional.This paper integrates a previously proposed probabilistic method for estimating the post-earthquake restoration of critical utility services with an individual building’s functional recovery assessment framework.The integration was performed by incorporating utilities into the building system fault trees embedded into a functional recovery framework for various building occupancies(residential and commercial office buildings).Once incorporated,the results are used to interrogate the functional recovery of a reinforced concrete building,and the recovery time results were presented for seven cases investigating contributing factors in the functional recovery results including the number of crews available for lifeline restoration,the effect of low-quality service on meeting tenant requirements for elevators,heating ventilation and air conditioning(HVAC),plumbing and electrical systems,consideration of fire watch,the effect of building seismic retrofit,as well as different cases of fragility functions for the lifeline systems.Results showed that utility systems’disruption does not have a significant impact on the recoccupancy of a building because only one utility-dependent building system(fire suppression)is needed for the building’s safety.Unlike reoccupancy,utility systems are significant for functional recovery,mainly at moderate hazard levels because,at these levels,lifeline networks could be damaged without significant building damage,such that the lifeline systems restoration governs.Buildings with more restrictive tenant requirements are more sensitive to tenant disruptions.展开更多
Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarize...Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ...Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.展开更多
The international research project,developed through the collaboration between the University of Chieti and Pescara“G.d'Annunzio”and theÉcole Nationale d'Architecture of Marrakech,aims to explore new st...The international research project,developed through the collaboration between the University of Chieti and Pescara“G.d'Annunzio”and theÉcole Nationale d'Architecture of Marrakech,aims to explore new strategies for emergency housing,with a focus on technological innovation and the resilience of temporary shelters.The main goal of the research is to define a more efficient housing module for post-earthquake scenarios,based on the analysis of the most advanced international solutions for first-response shelters.This study has made it possible to identify both the strengths and weaknesses of existing proposals,leading to the development of a housing model capable of improving living conditions during emergency phases.The objective is to propose an innovative housing module that not only addresses immediate post-disaster needs but is also adaptable to the specific socio-cultural characteristics of the affected populations.As a result of this work,the“DIVA-Variable Dimension Emergency Shelter”project was developed.This housing model stands out for its ability to adapt to the needs of different emergency phases,offering a versatile and customizable solution that effectively addresses post-earthquake challenges while ensuring respect for cultural specificities and improving quality of life.展开更多
On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresp...On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity VIII. However, liquefaction phenomena at ten different sites in regions of seismic intensity VI were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections, e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand, course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.展开更多
1. Introduction Tokyo, one of the largest cities in the world, is the capital of Japan, a heavily earthquake-prone country. The Japanese population and much of its functionality are highly concentrated in Tokyo. The e...1. Introduction Tokyo, one of the largest cities in the world, is the capital of Japan, a heavily earthquake-prone country. The Japanese population and much of its functionality are highly concentrated in Tokyo. The estimated damage to Tokyo as a result of future large earthquakes with a magnitude greater than the Japanese scale 7 is extremely high. The number of casualties could exceed 20 000 due to both the shaking itself and post-earthquake fires.展开更多
Various methods have been developed to detect and assess building's damages due to earthquakes using remotely sensed data.After the launch of the high resolution sensors such as IKONOS and QuickBird,it becomes rea...Various methods have been developed to detect and assess building's damages due to earthquakes using remotely sensed data.After the launch of the high resolution sensors such as IKONOS and QuickBird,it becomes realistic to identify damages on the scale of individual building.However the low accuracy of the results has often led to the use of visual interpretation techniques.Moreover,it is very difficult to estimate the degree of building damage(e.g.slight damage,moderate damage,or severe damage) in detail using the existing methods.Therefore,a novel approach integrating LiDAR data and high resolution optical imagery is proposed for evaluating building damage degree quantitatively.The approach consists of two steps:3D building model reconstruction and rooftop patch-oriented 3D change detection.Firstly,a method is proposed for automatically reconstructing 3D building models with precise geometric position and fine details,using pre-earthquake LiDAR data and high resolution imagery.Secondly,focusing on each rooftop patch of the 3D building models,the pre- and post-earthquake LiDAR points belonging to the patch are collected and compared to detect whether it was destroyed or not,and then the degree of building damage can be identified based on the ratio of the destroyed rooftop patches to all rooftop patches.The novelty of the proposed approach is to detect damages on the scale of building's rooftop patch and realize quantitative estimation of building damage degree.展开更多
Land suitability assessment (LSA) is one of the key processes of land-use planning. Given its particularity of land suitability assessment for post-earthquake reconstruction, this paper takes into account geological...Land suitability assessment (LSA) is one of the key processes of land-use planning. Given its particularity of land suitability assessment for post-earthquake reconstruction, this paper takes into account geological conditions, risk of disasters, water and land resources conditions, and eco-environmental suitability and emphasizes safety factor in the assessment. Taking the April 20, 2013 Mw 6.6 Lushan earthquake as a case, this assessment establishes factors system, uses GIS spatial analysis techniques and data of geology, topography, resources, and eco-environment to evaluate the land suitability for reconstruction. The results show that: (1) the spatial characteristics of land suitability for reconstruction at grid scale and administrative scale manifest that most of the piedmont plains in the east are suitable for large-scale population aggregation, industrialization, and urbanization development; and (2) for the six hard-hit counties, Mingshan is the preferred region for large-scale post-earthquake reconstruction due to its high construction index and suitable land per capita, and some plots of land in the valleys could be selected for in-situ small-scale reconstruction in Lushan. The land suitability assessment for post-earthquake reconstruction would be significant to making sound reconstruction planning for achieving sustainable regional development in the Mw 6.6 Lushan earthquake stricken area. This study could be used as a reference for the regions with similar events.展开更多
A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The ob...A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.展开更多
The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity da...The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.展开更多
Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new...Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models.展开更多
In post-earthquake surveys,it is difficult(and often infeasible)to observe and quantify displacements beyond line-of-sight(LOS),given seismic force-resisting and gravity systems exist completely or partially within a ...In post-earthquake surveys,it is difficult(and often infeasible)to observe and quantify displacements beyond line-of-sight(LOS),given seismic force-resisting and gravity systems exist completely or partially within a building′s enclosure.To overcome this limitation,we develop a novel framework that generalizes graph-based state estimation towards structural joint localization via engineered landmarks.These landmarks provide an indirect means to estimate residual displacements where direct LOS is unavailable.Within our framework,engineered landmarks define topologies of uniquely identifiable landmarks that are either visible or non-visible to a robot performing simultaneous localization and mapping(SLAM).Within the SLAM approach,factors encoding robot odometry and robot-to-visible landmark measurements are formulated for the cases of wireless sensing and fiducial object detection and tracking.Visible landmarks are rigidly attached to non-visible landmark subsets for each engineered landmark,where the complete set of non-visible landmarks form globally rigid and localizable connectivity graphs via range-based factors.Complimentary subsets of non-visible landmarks are embedded within the base structure and uniquely define joint pose via geometric factors.All factors are unified within a common graph to solve for the maximum a posteriori estimate of robot,landmark,and joint states via nonlinear least squares optimization.To demonstrate the applicability of our approach,we apply the Monte Carlo method over a parameterization of system noise to calculate residual joint pose error distributions,maximum average inter-story drift ratios,and related summary statistics for a 19-story nonlinear structural model.By performing nonlinear time history analyses over sets of service-level and maximum considered earthquakes,our parametric study gives insight into our method′s application towards post-earthquake building evaluation in non-LOS conditions.展开更多
基金National Natural Science Foundation of China under Grant Nos.U1939210 and 51825801。
文摘The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period.
文摘Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.
基金National Outstanding Youth Science Foundation (59825105).
文摘The authors study the structure, functions and data organization for the hazard analysis system of urban post-earthquake fire on the platform of GIS. A general hazard analysis model of the post-earthquake fire is presented. Taking Shanghai central district as background, a system for hazard analysis of the post-earthquake fire and auxiliary decision-against fire is developed.
基金supported by The National Basic Research Program of China (also called 973 Program) (Grant No. 2008CB425802)the National Natural Science Foundation of China (Grant No. 40872181)
文摘Among the triggering factors of postearthquake bedrock landslides, rainfall plays an important role. However, with slope variation, the mechanism of its effects on the failure of rock landslides is not dear. Here, from the viewpoint of fracture mechanics, and based on post-earthquake conditions, the mechanisms of crack propagation, water infiltration and development of the sliding surface were investigated. Then, according to the upper boundary theorem, the effects of water infiltrated into fractures on the stability of rock slopes were analyzed quantitatively. Finally, an example is presented to verify the theory. The results show that the propagation and coalescence of cracks and the lubrication of incipient sliding surfaces are the main causes of the failure of post-earthquake rock landslides in response to rainfall.
文摘Natural disasters provide an acute image of how man-made technologies are a cause of conflict when it comes to nature. It is man versus wild in its true means. The nature lets us grow and increase our settlements. We encroach on other animals' territories and it is only when the environment's patience runs out that it retaliates in forms of natural disasters. These disasters affect numerous lives and kill a lot ofhnmans. This is the main reason why we require more stable structures and preventive measures to battle the wrath of the nature. Rescue and search operations are conducted by many different government and private agencies including NGOs. These operations aim at providing the required relief and supplies after the disaster. Injured people need to be treated. People in dangerous zones need to be evacuated. Help is needed in many forms. Out of the many natural disasters, this paper will focus on the occurrence of earthquakes. Severe earthquakes destroy buildings and structures like roads, bridges etc. and wreak havoc in the community. Earthquakes largely damage all human constructions, including houses. This is the reason why a reconstruction program for dwellings and housings is of utmost importance. A home is only secondary to basic needs such as food and water. A well-planned strategy is important when it comes to launching a post-earthquake reconstruction program. The strategy should be reasonable and should consider the best interests of everyone affected; self-help and imported fabrication should play no part in the decision-making procedures. Creating awareness, physically demonstrating options and delivering are the three steps for the success of reconstruction programs. The extent of affected area and the magnitude of earthquakes are variable in nature and it is on these two aspects that the reconstruction strategy is devised. Technical aspects are focused towards the development of the affected areas and conceptual design of surrounding neighborhoods. It also aims at identifying seminars and programs based on easy financing for a new home. Along with these, review processes are conducted for the analysis of new residential needs based on optimizing the use of available land for planning and development. The paper discusses the construction of housing and resettlements as prioritized activities that must be undertaken post an earthquake. Earthquakes physically only destroy structures and buildings but for the people affected, they destroy lives, jobs, companies, sources of food and the sense of safety and traumatize the ones who come out alive.
文摘The 2008 Wenchuan earthquake in Sichuan Province caused significant damage to Dujiangyan irrigation system,which is one of the world's cultural heritages.After the earthquake,the Chinese government launched the post-earthquake emergency conservation project for cultural heritages.The Fulong Taoist Temple in Dujiangyan was the first to adopt the conservation project.The earthquake-damaged Fulong Taoist Temple was restored in just 18 months.This article reviews the entire emergency conservation project of Fulong Taoist Temple in Dujiangyan after the earthquake,discusses the restoration principles and technical methods used in this project,and uses the comments of the Asia-Pacific Heritage Protection Award to expound the historical significance of this protection project.
基金Financial support for this work was provided by the US Depart-ment of Commerce,National Institute of Standards and Technology un-der the Financial Assistance Award Number#70NANB19H058.
文摘Experience from past earthquakes has demonstrated the need to account for design goals beyond safety,known as functional recovery objectives,in the interest of community resilience.Frameworks have been proposed in the literature to assess the post-earthquake functional recovery of a building,but without accounting for utility systems’disruption,which may be a key contributor to determining when a building is functional.This paper integrates a previously proposed probabilistic method for estimating the post-earthquake restoration of critical utility services with an individual building’s functional recovery assessment framework.The integration was performed by incorporating utilities into the building system fault trees embedded into a functional recovery framework for various building occupancies(residential and commercial office buildings).Once incorporated,the results are used to interrogate the functional recovery of a reinforced concrete building,and the recovery time results were presented for seven cases investigating contributing factors in the functional recovery results including the number of crews available for lifeline restoration,the effect of low-quality service on meeting tenant requirements for elevators,heating ventilation and air conditioning(HVAC),plumbing and electrical systems,consideration of fire watch,the effect of building seismic retrofit,as well as different cases of fragility functions for the lifeline systems.Results showed that utility systems’disruption does not have a significant impact on the recoccupancy of a building because only one utility-dependent building system(fire suppression)is needed for the building’s safety.Unlike reoccupancy,utility systems are significant for functional recovery,mainly at moderate hazard levels because,at these levels,lifeline networks could be damaged without significant building damage,such that the lifeline systems restoration governs.Buildings with more restrictive tenant requirements are more sensitive to tenant disruptions.
基金funded by the National Natural Science Foundation of China under the project“Research on Urban Spatial Coupling Mechanism Between Urban Epidemic Spreading and Vulnerability and Planning Response in Chengdu-Chongqing Area”(Grant No.52078423)the Major Program of Sichuan Provincial Scientific Research under the Project“Research and Demonstration of Resilient Collaborative Planning and Design for Park Cities”(Grant No.2020YFS0054)the Sichuan Provincial Science and Technology Innovation Platform and Talent Plan"Research on the Construction and Development Strategies of Several Major Infrastructure Systems for New Smart Cities"(Grant No.2022JDR0356).
文摘Post-disaster reconstruction is a topic of global concern,and traditional villages have special heritage attributes and need to face more requirements and obstacles in post-disaster reconstruction.This paper summarizes four concepts based on the research on post-disaster reconstruction both domestically and internationally,as well as the recovery and reconstruction of cultural heritage.Through a field survey of traditional villages in the Ms 6.8 Luding earthquake-stricken area,it is found that there are problems such as insufficient awareness of heritage value,misalignment of scientific reconstruction technology,and insufficient protection of reconstruction elements during the reconstruction process.Traditional villages face the risk of declining or even loss of heritage value.In order to effectively protect traditional villages and inherit the carrier of regional culture,four targeted reconstruction response strategies are proposed,i.e.,to"establish special planning for traditional village preservation","emphasize recovery of the authenticity of village heritage","ensure elements for village heritage recovery"and"promote the activation and utilization of village heritage",based on the problems discovered during the survey and the four concepts summarized in the research on post-disaster reconstruction of traditional villages.The research results hope to provide useful reference for ancient cultural areas affected by earthquakes on how to protect cultural heritage during the post-disaster reconstruction process.
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金supports from the National Natural Science Foundation of China(61801525)the independent fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05+3 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2023-3-5))the Foundation of the state key Laboratory of Transducer Technology(No.SKT2301),Shenzhen Science and Technology Program(JCYJ20220530161809020&JCYJ20220818100415033)the Young Top Talent of Fujian Young Eagle Program of Fujian Province and Natural Science Foundation of Fujian Province(2023J02013)National Key R&D Program of China(2022YFB2802051).
文摘Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.
文摘The international research project,developed through the collaboration between the University of Chieti and Pescara“G.d'Annunzio”and theÉcole Nationale d'Architecture of Marrakech,aims to explore new strategies for emergency housing,with a focus on technological innovation and the resilience of temporary shelters.The main goal of the research is to define a more efficient housing module for post-earthquake scenarios,based on the analysis of the most advanced international solutions for first-response shelters.This study has made it possible to identify both the strengths and weaknesses of existing proposals,leading to the development of a housing model capable of improving living conditions during emergency phases.The objective is to propose an innovative housing module that not only addresses immediate post-disaster needs but is also adaptable to the specific socio-cultural characteristics of the affected populations.As a result of this work,the“DIVA-Variable Dimension Emergency Shelter”project was developed.This housing model stands out for its ability to adapt to the needs of different emergency phases,offering a versatile and customizable solution that effectively addresses post-earthquake challenges while ensuring respect for cultural specificities and improving quality of life.
基金National Natural Science Foundation of China Under Grant No.50638010 the Foundation of Ministry of Education for Innovation Group Under Grant No. IRT0518
文摘On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity VIII. However, liquefaction phenomena at ten different sites in regions of seismic intensity VI were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections, e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand, course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.
文摘1. Introduction Tokyo, one of the largest cities in the world, is the capital of Japan, a heavily earthquake-prone country. The Japanese population and much of its functionality are highly concentrated in Tokyo. The estimated damage to Tokyo as a result of future large earthquakes with a magnitude greater than the Japanese scale 7 is extremely high. The number of casualties could exceed 20 000 due to both the shaking itself and post-earthquake fires.
基金Supported by the National Natural Science Foundation of China (Grant No.40701117)Research Foundation for the Doctoral Program of Higher Education of China (Grant No.20070284001)+2 种基金the National Basic Research Program of China ("973" Program) (Grant No.2006CB701300)Foundation for University Key Teacher by the Chinese Ministry of Educationthe "985" Project of Nanjing University
文摘Various methods have been developed to detect and assess building's damages due to earthquakes using remotely sensed data.After the launch of the high resolution sensors such as IKONOS and QuickBird,it becomes realistic to identify damages on the scale of individual building.However the low accuracy of the results has often led to the use of visual interpretation techniques.Moreover,it is very difficult to estimate the degree of building damage(e.g.slight damage,moderate damage,or severe damage) in detail using the existing methods.Therefore,a novel approach integrating LiDAR data and high resolution optical imagery is proposed for evaluating building damage degree quantitatively.The approach consists of two steps:3D building model reconstruction and rooftop patch-oriented 3D change detection.Firstly,a method is proposed for automatically reconstructing 3D building models with precise geometric position and fine details,using pre-earthquake LiDAR data and high resolution imagery.Secondly,focusing on each rooftop patch of the 3D building models,the pre- and post-earthquake LiDAR points belonging to the patch are collected and compared to detect whether it was destroyed or not,and then the degree of building damage can be identified based on the ratio of the destroyed rooftop patches to all rooftop patches.The novelty of the proposed approach is to detect damages on the scale of building's rooftop patch and realize quantitative estimation of building damage degree.
基金National Natural Science Foundation of China,No.41301121,No.41430636,No.41171449Science and Technology Service Network Initiative of the Chinese Academy of Sciences,No.KFJ-EW-STS-003The Key Research Program of the Chinese Academy of Sciences,No.KZZD-EW-06-01
文摘Land suitability assessment (LSA) is one of the key processes of land-use planning. Given its particularity of land suitability assessment for post-earthquake reconstruction, this paper takes into account geological conditions, risk of disasters, water and land resources conditions, and eco-environmental suitability and emphasizes safety factor in the assessment. Taking the April 20, 2013 Mw 6.6 Lushan earthquake as a case, this assessment establishes factors system, uses GIS spatial analysis techniques and data of geology, topography, resources, and eco-environment to evaluate the land suitability for reconstruction. The results show that: (1) the spatial characteristics of land suitability for reconstruction at grid scale and administrative scale manifest that most of the piedmont plains in the east are suitable for large-scale population aggregation, industrialization, and urbanization development; and (2) for the six hard-hit counties, Mingshan is the preferred region for large-scale post-earthquake reconstruction due to its high construction index and suitable land per capita, and some plots of land in the valleys could be selected for in-situ small-scale reconstruction in Lushan. The land suitability assessment for post-earthquake reconstruction would be significant to making sound reconstruction planning for achieving sustainable regional development in the Mw 6.6 Lushan earthquake stricken area. This study could be used as a reference for the regions with similar events.
文摘A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.
基金financially supported by the National Natural Science Foundation of China (40574012,40374031)Key Project of the National Science & Technology Pillar Program in the Eleventh Five-year Plan(2006BAC01B02-02)Monitoring Project of China Earthquake Administration (201210)
文摘The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.
基金National Key R&D Program of China under Grant No.2019YFC1511005the National Natural Science Foundation of China under Grant Nos.51921006,52192661 and 52008138+2 种基金the China Postdoctoral Science Foundation under Grant Nos.BX20190102 and 2019M661286the Heilongjiang Natural Science Foundation under Grant No.LH2022E070the Heilongjiang Province Postdoctoral Science Foundation under Grant Nos.LBH-TZ2016 and LBH-Z19064。
文摘Recent studies for computer vision and deep learning-based,post-earthquake inspections on RC structures mainly perform well for specific tasks,while the trained models must be fine-tuned and re-trained when facing new tasks and datasets,which is inevitably time-consuming.This study proposes a multi-task learning approach that simultaneously accomplishes the semantic segmentation of seven-type structural components,three-type seismic damage,and four-type deterioration states.The proposed method contains a CNN-based encoder-decoder backbone subnetwork with skip-connection modules and a multi-head,task-specific recognition subnetwork.The backbone subnetwork is designed to extract multi-level features of post-earthquake RC structures.The multi-head,task-specific recognition subnetwork consists of three individual self-attention pipelines,each of which utilizes extracted multi-level features from the backbone network as a mutual guidance for the individual segmentation task.A synthetical loss function is designed with real-time adaptive coefficients to balance multi-task losses and focus on the most unstably fluctuating one.Ablation experiments and comparative studies are further conducted to demonstrate their effectiveness and necessity.The results show that the proposed method can simultaneously recognize different structural components,seismic damage,and deterioration states,and that the overall performance of the three-task learning models gains general improvement when compared to all single-task and dual-task models.
基金supported by the Natural Sciences and Engineering Research Council of Canada through their Research Tools and Instruments and Fellowship programsthe Graduate Fellowship program by the University of California, Los Angeles。
文摘In post-earthquake surveys,it is difficult(and often infeasible)to observe and quantify displacements beyond line-of-sight(LOS),given seismic force-resisting and gravity systems exist completely or partially within a building′s enclosure.To overcome this limitation,we develop a novel framework that generalizes graph-based state estimation towards structural joint localization via engineered landmarks.These landmarks provide an indirect means to estimate residual displacements where direct LOS is unavailable.Within our framework,engineered landmarks define topologies of uniquely identifiable landmarks that are either visible or non-visible to a robot performing simultaneous localization and mapping(SLAM).Within the SLAM approach,factors encoding robot odometry and robot-to-visible landmark measurements are formulated for the cases of wireless sensing and fiducial object detection and tracking.Visible landmarks are rigidly attached to non-visible landmark subsets for each engineered landmark,where the complete set of non-visible landmarks form globally rigid and localizable connectivity graphs via range-based factors.Complimentary subsets of non-visible landmarks are embedded within the base structure and uniquely define joint pose via geometric factors.All factors are unified within a common graph to solve for the maximum a posteriori estimate of robot,landmark,and joint states via nonlinear least squares optimization.To demonstrate the applicability of our approach,we apply the Monte Carlo method over a parameterization of system noise to calculate residual joint pose error distributions,maximum average inter-story drift ratios,and related summary statistics for a 19-story nonlinear structural model.By performing nonlinear time history analyses over sets of service-level and maximum considered earthquakes,our parametric study gives insight into our method′s application towards post-earthquake building evaluation in non-LOS conditions.