[Objectives]This study was conducted to explore the effects of heat treatment on processing characteristics of pork.[Methods]The effects of low-temperature long-term cooking(LTLT),high-temperature vacuum cooking,high-...[Objectives]This study was conducted to explore the effects of heat treatment on processing characteristics of pork.[Methods]The effects of low-temperature long-term cooking(LTLT),high-temperature vacuum cooking,high-temperature cooking and high-temperature steaming on some indexes of pork products were studied,and principal component analysis was carried out.[Results]LTLT had significant effects on the total sensory score,moisture content,cooking loss rate,a value,shear force,and TBARS of pork,and the corresponding optimal product indicators were 71.40 points,72.36%,14.20%,4.79,7089.87 g,and 0.05 mg/kg,respectively.The microstructure changes in the LTLT group were relatively small,as the muscle fiber structure was relatively dense and uniform,and the gaps between muscle fibers were small.A total of 30 volatile flavor compounds were detected in the four groups,mainly alcohols,alkenes,alkanes,lipids,ketones,and aldehydes,and the LTLT group had more types and high contents.PCA analysis showed that the sensory evaluation,moisture content,elasticity,a value and LTLT were positively correlated with principal component 1.[Conclusions]Various indexes comprehensively showed that the LTLT group had better meat color,flavor,texture characteristics and lower oxidation degree than traditional cooking and steaming methods,which provides a theoretical reference for its large-scale application in the processing of prepared meat products.展开更多
EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃...EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.展开更多
Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained co...Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings.展开更多
The reducing efficiencies of the commonly used heat treatment methods and fermentation processes on aflatoxin M1 (AFM1) in Nigeria were investigated. Seventy samples of fresh cow milk from both conventional and tradit...The reducing efficiencies of the commonly used heat treatment methods and fermentation processes on aflatoxin M1 (AFM1) in Nigeria were investigated. Seventy samples of fresh cow milk from both conventional and traditional dairy cattle herds were collected and analyzed for the determination of AFM1 using Cobra-cell incorporated high performance liquid chromatography. Of these analyzed samples, 56 (80.0%) tested positive for AFM1 out of which 3 milk samples with high AFM1 concentrations were selectively pooled and subjected to varied conditions of heat treatments and fermentation processes using both indigenized and exotic strains of lactic acid bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus and L. rhamnosus and L. plantarum) as starter cultures respectively. Both processes used either singly or combined, demonstrated high degrees of reducing effects on AFM1 levels. Sterilization of the milk at 121?C and 80?C under the same condition of time (15 - 20) min showed significant reduction of up to 58.8% (p 0.05) in the level of AFM1 when compared with the initial mean AFM1 concentration of the untreated fresh milk. The situation was however different around the boiling temperature of 100?C at which point the level of AFM1 reduction was found to be inconsistent. The indigenized combined strains showed some slight margins of AFM1 reduction in the proportions of (20.5, 30.8 and 43.9)% over and above that of the exotic strains (17.4, 30.0 and 41.1)% in 12 h, 48 h and 72 h of fermentation respectively. Generally, fermentation alone showed lower reduction of AFM1 in milk from 24.5% to 43.9% compared with the reducing activities of (35.4 to 58.8)% when heat-treated milk samples were subsequently subjected to varied fermentation conditions.展开更多
The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of s...The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of solid solution temperature, ageing temperature, ageing time on microscopic mechanism of the mechanical properties of the 2014Al alloy is studied using microscope, transmission electron microscope. The best heat treatment process of the 2014Al alloy is developed. The experimental results indicate that the strength σ<sub>b</sub>, yield stress σ<sub>0.2</sub>, percentage elongation δ of the alloy reach separately 490~500 MPa, 450~490 MPa, 10~12% adopting the new heat treatment process. Compared with GB, the strength increases 20~30%, the percentage elongation increases 30~40%. The mechanism of the new heat-treatment process is also discussed.展开更多
Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface mod...Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface modification technologies become an important research area. Recently,to reduce CO_2 emissions by saving the manufacturing time,the following new special steel and advance heat treatment methods were developed: (1 ) An anti-coarsening extra-fine case hardening steel for automobile gear was developed,whose carburizing temperature can be improved for conventional 930 - 950℃to 1 050℃without coarsening,and the carburizing time can be reduced by maximum 75%. (2) Various microalloyed steels for fracture splitting connecting rod were developed.By using the above-mentioned steel combined with Thermo Mechanical Control Process(TMCP) method,the manufacturing time can be reduced by 30%-40%. (3) Vacuum carburizing and mild carburizing combined with induction quenching are being developed to replace the traditional gas carburizing,and the CO_2 emissions can be reduced by 20%-40%. (4) Intensive quenching is another new quenching technology which can be defined as cooling usually with pure water quenchant or low concentration water/salt solutions at a rate several times higher than the rate of ' normal' or conventional quenching,and the conventional effective case hardening depth can be reduce greatly and carburizing time can reduced. In addition,the high pressure gas quenching for reducing the quenching distortion and dual shot-peening for improving fatigue strength of gear will also be discussed. In a word,the present paper will focus on how to use the interaction among the development of special steel, advance heat treatment and surface modification to improve the strength of automotive components while reducing the manufacturing cost and impact to environment.展开更多
This research intends to find out the optimal mechanical properties of AISI 4130 steel welded by the GTAW process. Six test plates were joined by two types of filler wire with similar chemical composition to the base ...This research intends to find out the optimal mechanical properties of AISI 4130 steel welded by the GTAW process. Six test plates were joined by two types of filler wire with similar chemical composition to the base metal, and with lower carbon content and slightly higher alloy elements content compared to the first one. Test plates then exerted three different pre-heat and post-heat treatments on both groups. The three types of heat treatments were alternatively without pre-heat and post-heat, with pre-heat only, and finally with pre-heat and post-heat. Tensile, side bends and impact tests (for weld zone and HAZ) have been conducted. Results show that using low-carbon filler wire along with pre- and post-heat resulted in outstanding mechanical properties.展开更多
The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost press...The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance. The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.展开更多
The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for...The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for obvious reasons. PSM (Precision Sand Molds) process uses sand and organic binder to generate a mold and even allows the manufacturing of complex diesel engine blocks in aluminum alloys. Combined technologies are available for semi-permanent mold castings with cores and castings made in Precision Sand Molds with organic binders. Castings are placed into the special heat treatment furnace immediately after pouring without the operations in stand alone machinery. This patented Sand Lion 3- in-1 technology processes hot castings and carries out three (3) foundry processes simultaneously in one (1) automated machine: 1) De-coring and sand removal; 2) Thermal sand reclamation; 3) Solution heat treatment of castings. The combination of several main casting processes is reflected in significant reductions of energy consumption, of production costs, and improving the quality of the castings. Audits in foundries using the 3-in-l process showed an average reduction in production costs of more than 30%.展开更多
The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-soli...The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91 D magnesium alloy, and the optimum semi-solid AZ91 D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the "entrapped liquid" pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later.展开更多
The rheo-squeeze casting(RSC)process is a newly-developed casting process for high-performance components.In order to further improve the mechanical properties of magnesium alloys,AZ91-2wt.%Ca(AZX912)alloy was prepare...The rheo-squeeze casting(RSC)process is a newly-developed casting process for high-performance components.In order to further improve the mechanical properties of magnesium alloys,AZ91-2wt.%Ca(AZX912)alloy was prepared by the RSC process and then subjected to heat treatment.The microstructure evolution and mechanical properties of AZX912 alloy during heat treatment were investigated.It was found that during solid solution treatment at 410°C,β-Mg_(17)Al_(12) phase with low melting point dissolves intoα-Mg matrix,while the connected network-like Al_2Ca phase with high melting point tends to separate gradually,and the tips of Al_2Ca phase is partially spheroidized.With the increase of solid solution time,the yield strength(YS)of AZX912 alloy decreases gradually while the ultimate tensile strength(UTS)and elongation to failure(E_f)increase continuously.Isothermal ageing at 225°C promotes the precipitation ofβ-Mg_(17)Al_(12) phase in the matrix of AZX912 alloy.The hardness reaches the peak after ageing for 96 h and the increase in hardness is about 24.8%.The precipitation ofβ-Mg_(17)Al_(12) phase during ageing treatment is beneficial to YS but harmful to E_f.The mechanism of microstructure evolution during heat treatment and its effect on mechanical properties are discussed.展开更多
The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in th...The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied.Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages.Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward.With the rapid development of automotive industry,there will be certainly a new upsurge of research and application of air cushion furnace for heat treatment of aluminum alloy auto body sheet.展开更多
Induction heating has important applications in science and industry. The method of induction heating can be successfully used for melting and heat treatment of titanium and zirconium alloys. Different applications us...Induction heating has important applications in science and industry. The method of induction heating can be successfully used for melting and heat treatment of titanium and zirconium alloys. Different applications using induction precise heating before plastic deformation are discussed in this paper. For alloys of many metals such as titanium, zirconium, niobium, tantalum, etc., it is important to provide precision heating with a high degree of homogeneity of the temperature field and strict adherence to the condition of heating. This is explained by polymorphism of the alloys based on these metals, their chemical activity at high temperatures and the specific thermal and electrical properties. It is very important for induction heating to define the extreme achievable unevenness of the temperature field. For special alloys it is necessary to use resistance furnaces for homogenization of billets’ temperature after heating in the inductors. Optimal control can be used for massive billets to reduce significantly the heating time, energy expenses and to improve the quality of the temperature field distribution. Optimization of induction heating process can be achieved by synchronous solution of the problem of optimal control and design with specially developed models.展开更多
The effect of heat treatment and rolling process on the properties and microstructures of Ti-26(Ti-15V-3Al-3Cr-3Sn-Forming) sheet was studied. The results show that the best rolling temperature for Ti-26 alloy is in t...The effect of heat treatment and rolling process on the properties and microstructures of Ti-26(Ti-15V-3Al-3Cr-3Sn-Forming) sheet was studied. The results show that the best rolling temperature for Ti-26 alloy is in the temperature range from 900 ℃ to 950℃. Under this condition,the resistance of deformation and yield ratio are low and the alloy has better hot work ability. The alloy will achieve better mechanical properties and completely recrystallized β microstructure when the deformation ratio is not less than 60% and the solution temperature is 30 ℃ above the phase transformation temperature. The best heat treatment conditions are recommended as:790℃,30 min,AC or WQ followed by 510 ℃,10 h,AC. Under this heat treatment condition the strength of the Ti-26 alloy is 1 230 MPa and the elongation is 15%.展开更多
基金Supported by Natural Science Foundation of Sichuan Province(2022NSFSC1644)Science and Technology Achievement Transfer and Transformation Demonstration Project of Sichuan Province(2022ZHCG0063)Sichuan Pig Innovation Team of the National Modern Agricultural Industry Technology System(scsztd-2023-08-07).
文摘[Objectives]This study was conducted to explore the effects of heat treatment on processing characteristics of pork.[Methods]The effects of low-temperature long-term cooking(LTLT),high-temperature vacuum cooking,high-temperature cooking and high-temperature steaming on some indexes of pork products were studied,and principal component analysis was carried out.[Results]LTLT had significant effects on the total sensory score,moisture content,cooking loss rate,a value,shear force,and TBARS of pork,and the corresponding optimal product indicators were 71.40 points,72.36%,14.20%,4.79,7089.87 g,and 0.05 mg/kg,respectively.The microstructure changes in the LTLT group were relatively small,as the muscle fiber structure was relatively dense and uniform,and the gaps between muscle fibers were small.A total of 30 volatile flavor compounds were detected in the four groups,mainly alcohols,alkenes,alkanes,lipids,ketones,and aldehydes,and the LTLT group had more types and high contents.PCA analysis showed that the sensory evaluation,moisture content,elasticity,a value and LTLT were positively correlated with principal component 1.[Conclusions]Various indexes comprehensively showed that the LTLT group had better meat color,flavor,texture characteristics and lower oxidation degree than traditional cooking and steaming methods,which provides a theoretical reference for its large-scale application in the processing of prepared meat products.
文摘EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.
文摘Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings.
文摘The reducing efficiencies of the commonly used heat treatment methods and fermentation processes on aflatoxin M1 (AFM1) in Nigeria were investigated. Seventy samples of fresh cow milk from both conventional and traditional dairy cattle herds were collected and analyzed for the determination of AFM1 using Cobra-cell incorporated high performance liquid chromatography. Of these analyzed samples, 56 (80.0%) tested positive for AFM1 out of which 3 milk samples with high AFM1 concentrations were selectively pooled and subjected to varied conditions of heat treatments and fermentation processes using both indigenized and exotic strains of lactic acid bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus and L. rhamnosus and L. plantarum) as starter cultures respectively. Both processes used either singly or combined, demonstrated high degrees of reducing effects on AFM1 levels. Sterilization of the milk at 121?C and 80?C under the same condition of time (15 - 20) min showed significant reduction of up to 58.8% (p 0.05) in the level of AFM1 when compared with the initial mean AFM1 concentration of the untreated fresh milk. The situation was however different around the boiling temperature of 100?C at which point the level of AFM1 reduction was found to be inconsistent. The indigenized combined strains showed some slight margins of AFM1 reduction in the proportions of (20.5, 30.8 and 43.9)% over and above that of the exotic strains (17.4, 30.0 and 41.1)% in 12 h, 48 h and 72 h of fermentation respectively. Generally, fermentation alone showed lower reduction of AFM1 in milk from 24.5% to 43.9% compared with the reducing activities of (35.4 to 58.8)% when heat-treated milk samples were subsequently subjected to varied fermentation conditions.
文摘The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of solid solution temperature, ageing temperature, ageing time on microscopic mechanism of the mechanical properties of the 2014Al alloy is studied using microscope, transmission electron microscope. The best heat treatment process of the 2014Al alloy is developed. The experimental results indicate that the strength σ<sub>b</sub>, yield stress σ<sub>0.2</sub>, percentage elongation δ of the alloy reach separately 490~500 MPa, 450~490 MPa, 10~12% adopting the new heat treatment process. Compared with GB, the strength increases 20~30%, the percentage elongation increases 30~40%. The mechanism of the new heat-treatment process is also discussed.
文摘Demand of improving the mechanical properties and productivity of automotive components while minimizing environmental impact makes the development of special steel combined with advance heat treatment and surface modification technologies become an important research area. Recently,to reduce CO_2 emissions by saving the manufacturing time,the following new special steel and advance heat treatment methods were developed: (1 ) An anti-coarsening extra-fine case hardening steel for automobile gear was developed,whose carburizing temperature can be improved for conventional 930 - 950℃to 1 050℃without coarsening,and the carburizing time can be reduced by maximum 75%. (2) Various microalloyed steels for fracture splitting connecting rod were developed.By using the above-mentioned steel combined with Thermo Mechanical Control Process(TMCP) method,the manufacturing time can be reduced by 30%-40%. (3) Vacuum carburizing and mild carburizing combined with induction quenching are being developed to replace the traditional gas carburizing,and the CO_2 emissions can be reduced by 20%-40%. (4) Intensive quenching is another new quenching technology which can be defined as cooling usually with pure water quenchant or low concentration water/salt solutions at a rate several times higher than the rate of ' normal' or conventional quenching,and the conventional effective case hardening depth can be reduce greatly and carburizing time can reduced. In addition,the high pressure gas quenching for reducing the quenching distortion and dual shot-peening for improving fatigue strength of gear will also be discussed. In a word,the present paper will focus on how to use the interaction among the development of special steel, advance heat treatment and surface modification to improve the strength of automotive components while reducing the manufacturing cost and impact to environment.
文摘This research intends to find out the optimal mechanical properties of AISI 4130 steel welded by the GTAW process. Six test plates were joined by two types of filler wire with similar chemical composition to the base metal, and with lower carbon content and slightly higher alloy elements content compared to the first one. Test plates then exerted three different pre-heat and post-heat treatments on both groups. The three types of heat treatments were alternatively without pre-heat and post-heat, with pre-heat only, and finally with pre-heat and post-heat. Tensile, side bends and impact tests (for weld zone and HAZ) have been conducted. Results show that using low-carbon filler wire along with pre- and post-heat resulted in outstanding mechanical properties.
文摘The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance. The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.
文摘The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for obvious reasons. PSM (Precision Sand Molds) process uses sand and organic binder to generate a mold and even allows the manufacturing of complex diesel engine blocks in aluminum alloys. Combined technologies are available for semi-permanent mold castings with cores and castings made in Precision Sand Molds with organic binders. Castings are placed into the special heat treatment furnace immediately after pouring without the operations in stand alone machinery. This patented Sand Lion 3- in-1 technology processes hot castings and carries out three (3) foundry processes simultaneously in one (1) automated machine: 1) De-coring and sand removal; 2) Thermal sand reclamation; 3) Solution heat treatment of castings. The combination of several main casting processes is reflected in significant reductions of energy consumption, of production costs, and improving the quality of the castings. Audits in foundries using the 3-in-l process showed an average reduction in production costs of more than 30%.
基金financially supported by the Natural Science Foundation of Jiangxi,China(grant No.:20142BAB216015)Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials,China(grant No.:2013-KLP-07)
文摘The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91 D magnesium alloy, and the optimum semi-solid AZ91 D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the "entrapped liquid" pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later.
基金financially supported by National Natural Science Foundation of China(No.51601076 and No.51401093)Natural Science Fund for Colleges and Universities in Jiangsu Province(No.16KJB430013)
文摘The rheo-squeeze casting(RSC)process is a newly-developed casting process for high-performance components.In order to further improve the mechanical properties of magnesium alloys,AZ91-2wt.%Ca(AZX912)alloy was prepared by the RSC process and then subjected to heat treatment.The microstructure evolution and mechanical properties of AZX912 alloy during heat treatment were investigated.It was found that during solid solution treatment at 410°C,β-Mg_(17)Al_(12) phase with low melting point dissolves intoα-Mg matrix,while the connected network-like Al_2Ca phase with high melting point tends to separate gradually,and the tips of Al_2Ca phase is partially spheroidized.With the increase of solid solution time,the yield strength(YS)of AZX912 alloy decreases gradually while the ultimate tensile strength(UTS)and elongation to failure(E_f)increase continuously.Isothermal ageing at 225°C promotes the precipitation ofβ-Mg_(17)Al_(12) phase in the matrix of AZX912 alloy.The hardness reaches the peak after ageing for 96 h and the increase in hardness is about 24.8%.The precipitation ofβ-Mg_(17)Al_(12) phase during ageing treatment is beneficial to YS but harmful to E_f.The mechanism of microstructure evolution during heat treatment and its effect on mechanical properties are discussed.
文摘The process characteristics of heat treatment of aluminum alloy auto body sheet and the working principle of air cushion furnace were introduced.The process position and irreplaceable role of air cushion furnace in the aluminum alloy auto body sheet production was pointed out after the difficulty and key points in the whole production process of auto body sheet were studied.Then the development process of air cushion furnace line of aluminum alloy sheet was reviewed,summarized and divided to two stages.Based on the research of air cushion furnace,the key technology of it was analyzed,then the key points on process,equipment and control models of air cushion furnace for aluminum alloy auto body sheet in future were put forward.With the rapid development of automotive industry,there will be certainly a new upsurge of research and application of air cushion furnace for heat treatment of aluminum alloy auto body sheet.
文摘Induction heating has important applications in science and industry. The method of induction heating can be successfully used for melting and heat treatment of titanium and zirconium alloys. Different applications using induction precise heating before plastic deformation are discussed in this paper. For alloys of many metals such as titanium, zirconium, niobium, tantalum, etc., it is important to provide precision heating with a high degree of homogeneity of the temperature field and strict adherence to the condition of heating. This is explained by polymorphism of the alloys based on these metals, their chemical activity at high temperatures and the specific thermal and electrical properties. It is very important for induction heating to define the extreme achievable unevenness of the temperature field. For special alloys it is necessary to use resistance furnaces for homogenization of billets’ temperature after heating in the inductors. Optimal control can be used for massive billets to reduce significantly the heating time, energy expenses and to improve the quality of the temperature field distribution. Optimization of induction heating process can be achieved by synchronous solution of the problem of optimal control and design with specially developed models.
基金Project(2007CB613807) supported by the National Basic Research Program of Chin
文摘The effect of heat treatment and rolling process on the properties and microstructures of Ti-26(Ti-15V-3Al-3Cr-3Sn-Forming) sheet was studied. The results show that the best rolling temperature for Ti-26 alloy is in the temperature range from 900 ℃ to 950℃. Under this condition,the resistance of deformation and yield ratio are low and the alloy has better hot work ability. The alloy will achieve better mechanical properties and completely recrystallized β microstructure when the deformation ratio is not less than 60% and the solution temperature is 30 ℃ above the phase transformation temperature. The best heat treatment conditions are recommended as:790℃,30 min,AC or WQ followed by 510 ℃,10 h,AC. Under this heat treatment condition the strength of the Ti-26 alloy is 1 230 MPa and the elongation is 15%.