Genetic and metabolic engineering approaches are powerful tools for improving the tolerance of maize to abiotic stresses because they are faster and can afford greater control over agronomically useful traits. However...Genetic and metabolic engineering approaches are powerful tools for improving the tolerance of maize to abiotic stresses because they are faster and can afford greater control over agronomically useful traits. However, in-depth understanding of the molecular mechanisms controlling response to abiotic stresses is the prerequisite for successful implementation of these strategies. A great flaw to dissect the biological mechanisms by genome sequencing is that genome sequencing approach could not reflect real-time molecular actions of plants especially under the stresses because the living organisms rarely live in unchanging environments. Post-genomics such as transcriptomics, metabolomics, and proteomics can generate knowledge that is closer to the biological processes. With the development of post-genomics, it can be expected that voluminous data will be generated. This paper proposes that future research on maize stress tolerance in the era of post-genomics should focus on metabolomics and proteomics; stress tolerance of whole plant rather than individual tissues or organs; coordination of expression of genes among tissues; characterization of promoters of stress-responsive genes; interrelation between mechanisms for tolerance to, and growth recovery from the stress; hexose metabolism as well as the glycolysis pathway; and foundation genotypes.展开更多
Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments...Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments of proteomics at the levels of individual plants, tissues, organs and organells, as well as its applications in the area of plant genetic diversity, mutant characterization, and plant physiology, etc are reviewed. At last, the challenge and prospect of proteomics are discussed.展开更多
Pancreatic insulin-secretingβcells are essential in maintaining normal glucose homeostasis accomplished byhighly specialized transcription of insulin gene,of which occupies up to 40%their transcriptome.Deficiency of ...Pancreatic insulin-secretingβcells are essential in maintaining normal glucose homeostasis accomplished byhighly specialized transcription of insulin gene,of which occupies up to 40%their transcriptome.Deficiency of these cells causes diabetes mellitus,a global public health problem.Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells(i.e.,primitive cells capable of giving rise to all cell types in the body),a regenerative therapy to diabetes has not yet been established.Furthermore,the nomenclature ofβcells has become inconsistent,confusing and controversial due to the lack of standardized positive controls of developmental stagematched in vivo cells.In order to minimize this negative impact and facilitate critical research in this field,a postgenomic concept of pancreaticβcells might be helpful.In this review article,we will briefly describe howβcells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy,suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell.展开更多
While the importance of molecular marker technology was realized more than two decades ago,high-throughput marker development came into vogue only after the availability of hundreds of thousands of sequences in public...While the importance of molecular marker technology was realized more than two decades ago,high-throughput marker development came into vogue only after the availability of hundreds of thousands of sequences in public databases.Many examples now exist where markers are being used routinely in breeding programs for marker-assisted selection(MAS) of traits of interest or marker assisted recovery of genome of interest.Genetic analysis with thousands to tens of thousands of markers is now possible due to the...展开更多
RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, a...RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, and now it has developed into a kind of biotechnology as well as an important approach in post- genome era. This paper is to summarize the achievements of studies on RNAi tech- nology in basic biology, medicine, pharmacy, botany and other fields.展开更多
基金supported by the National Basic Research Program of China(2011CB100100)the 948 Program from the Ministry of Agriculture of China (2001-205)+2 种基金the Development Programs for Guangxi Science and Technology Research, China(Guikegong 10100005-4 and 0228019-6)the Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, China (Director’s grant-06-11)the Opening Project of Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, China (SB0601)
文摘Genetic and metabolic engineering approaches are powerful tools for improving the tolerance of maize to abiotic stresses because they are faster and can afford greater control over agronomically useful traits. However, in-depth understanding of the molecular mechanisms controlling response to abiotic stresses is the prerequisite for successful implementation of these strategies. A great flaw to dissect the biological mechanisms by genome sequencing is that genome sequencing approach could not reflect real-time molecular actions of plants especially under the stresses because the living organisms rarely live in unchanging environments. Post-genomics such as transcriptomics, metabolomics, and proteomics can generate knowledge that is closer to the biological processes. With the development of post-genomics, it can be expected that voluminous data will be generated. This paper proposes that future research on maize stress tolerance in the era of post-genomics should focus on metabolomics and proteomics; stress tolerance of whole plant rather than individual tissues or organs; coordination of expression of genes among tissues; characterization of promoters of stress-responsive genes; interrelation between mechanisms for tolerance to, and growth recovery from the stress; hexose metabolism as well as the glycolysis pathway; and foundation genotypes.
文摘Proteomics is one of the most active research fields in the post-genomic era. Here we briefly introduce the scientific background of the origination of proteomics and its content, research method. The new developments of proteomics at the levels of individual plants, tissues, organs and organells, as well as its applications in the area of plant genetic diversity, mutant characterization, and plant physiology, etc are reviewed. At last, the challenge and prospect of proteomics are discussed.
基金The Juvenile Diabetes Research Foundation(4-2006-1025)Medical Research Foundation of Royal Perth HospitalPerth Children’s Hospital Research Fund(TPCHRF2013)Grant(to F.X.Jiang)partially
文摘Pancreatic insulin-secretingβcells are essential in maintaining normal glucose homeostasis accomplished byhighly specialized transcription of insulin gene,of which occupies up to 40%their transcriptome.Deficiency of these cells causes diabetes mellitus,a global public health problem.Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells(i.e.,primitive cells capable of giving rise to all cell types in the body),a regenerative therapy to diabetes has not yet been established.Furthermore,the nomenclature ofβcells has become inconsistent,confusing and controversial due to the lack of standardized positive controls of developmental stagematched in vivo cells.In order to minimize this negative impact and facilitate critical research in this field,a postgenomic concept of pancreaticβcells might be helpful.In this review article,we will briefly describe howβcells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy,suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell.
文摘While the importance of molecular marker technology was realized more than two decades ago,high-throughput marker development came into vogue only after the availability of hundreds of thousands of sequences in public databases.Many examples now exist where markers are being used routinely in breeding programs for marker-assisted selection(MAS) of traits of interest or marker assisted recovery of genome of interest.Genetic analysis with thousands to tens of thousands of markers is now possible due to the...
文摘RNA interference (RNAi), caused by endogenous or exogenous double- stranded RNA (dsRNA) homologous with target genes, refers to gene silencing widely existing in animals and plants. It was first found in plants, and now it has developed into a kind of biotechnology as well as an important approach in post- genome era. This paper is to summarize the achievements of studies on RNAi tech- nology in basic biology, medicine, pharmacy, botany and other fields.