期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Mathematical framework of nonlinear elastic waves propagating in pre-stressed media
1
作者 Jiangcheng CAI Mingxi DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1705-1716,共12页
Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation... Acoustic nonlinearity holds potential as a method for assessing material stress.Analogous to the acoustoelastic effect,where the velocity of elastic waves is influenced by third-order elastic constants,the propagation of nonlinear acoustic waves in pre-stressed materials would be influenced by higher-order elastic constants.Despite this,there has been a notable absence of research exploring this phenomenon.Consequently,this paper aims to establish a theoretical framework for governing the propagation of nonlinear acoustic waves in pre-stressed materials.It delves into the impact of pre-stress on higher-order material parameters,and specifically examines the propagation of one-dimensional acoustic waves within the contexts of the uniaxial stress and the biaxial stress.This paper establishes a theoretical foundation for exploring the application of nonlinear ultrasonic techniques to measure pre-stress in materials. 展开更多
关键词 acoustoelastic effect nonlinear elastic wave pre-stress medium higher-order elastic constant
下载PDF
Life-Cycle Bearing Capacity for Pre-Stressed T-beams Based on Full-Scale Destructive Test
2
作者 Yushan Ye Tao Gao +4 位作者 Liankun Wang Junjie Ma Yingchun Cai Heng Liu Xiaoge Liu 《Structural Durability & Health Monitoring》 EI 2025年第1期145-166,共22页
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret... To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity. 展开更多
关键词 pre-stressed T-beams whole process destructive test bearing capacity verification coefficient
下载PDF
An evaluation of force-based design vs.direct displacement-based design of jointed precast post-tensioned wall systems 被引量:12
3
作者 M. Ataur Rahman Sri Sritharan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期285-296,共12页
The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tension... The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability. 展开更多
关键词 CONCRETE PRECAST unbonded post-tensioning WALL building code performance-based evaluation force-baseddesign direct-displacement based design
下载PDF
Rock engineering design of post-tensioned anchors for dams - A review 被引量:8
4
作者 E.T. Brown 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第1期1-13,共13页
High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and... High-capacity, post-tensioned anchors have found wide-spread use, originally in initial dam design and construction, and more recently in the strengthening and rehabilitation of concrete dams to meet modern design and safety standards. Despite the advances that have been made in rock mechanics and rock engineering during the last 80 years in which post-tensioned anchors have been used in dam en- gineering, some aspects of the rock engineering design of high-capacity rock anchors for dams have changed relatively little over the last 30 or 40 years. This applies, in particular, to the calculations usually carried out to establish the grouted embedment lengths required for deep, post-tensioned anchors. These calculations usually make simplified assumptions about the distribution and values of rock-grout interface shear strengths, the shape of the volume of rock likely to be involved in uplift failure under the influence of a system of post-tensioned anchors, and the mechanism of that failure. The resulting designs are generally conservative. It is concluded that these aspects of the rock engineering design of large, post- tensioned rock anchors for dams can be significantly improved by making greater use of modern, comprehensive, numerical analyses in conjunction with three-dimensional (3D) models of the rock mass structure, realistic rock and rock mass properties, and the results of prototype anchor tests in the rock mass concerned. 展开更多
关键词 Dam engineering post-tensioned anchorsRock engineering designGrout-tendon bondRock-grout bondRock mass uplift failure
下载PDF
Effect of insufficient tunnel crown thickness on the post-tensioned concrete lining of the Yellow River Crossing Tunnel and its strengthening schemes 被引量:2
5
作者 Qin Gan Cao Shengrong +1 位作者 Lai Xu Yang Fan 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期356-363,共8页
The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformation... The effect of deficiency in tunnel crown thickness on the Yellow River Crossing Tunnel with post-tensioned concrete inner lining was investigated by the elasto-plastic finite element method. Changes in the deformations and circumferential stresses of the post-tensioned concrete inner lining with the gradual decrease of the tunnel crown thickness were compared, and the potential bearing risk of insufficient tunnel crown thickness for the Yellow River Crossing Tunnel was revealed. Based on the finite element calculation results of circumferential stresses under different defective cases, the corresponding reinforcement schemes were proposed. The calculation results show that the inner lining can still maintain a satisfactory stress state when the tunnel crown thickness is equal to or greater than 0. 28 m. When the tunnel crown thickness decreases below 0.28 m, the external surface of the crown and internal surface of the crown's adjacent areas may be under tension. The tension stresses will incrementally increase and ultimately exceed the tensile strength of the inner lining concrete as the tunnel crown thickness further decreases gradually. Then, the Yellow River Crossing Tunnel cannot operate normally, and severe cracking, leaking or even failure may occur. When the tunnel crown thickness is equal to or greater than 0.28 m, the reinforcement suggestions are that the void spaces between the inner lining and the outer lining should be back-filled with concrete. When the tunnel crown thickness is less than 0. 28 m, the inner lining should be reinforced by steel plates after concrete back-filling. 展开更多
关键词 post-tensioned concrete linings runnel crownthickness stress redistribution finite element analysis tunnelreinforcement Yellow River Crossing Tunnel
下载PDF
Numerical study of a multiple post-tensioned rocking wall-frame system for seismic resilient precast concrete buildings 被引量:1
6
作者 Afshin Naserpour Mojtaba Fathi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期377-393,共17页
A multiple rocking wall-frame(MRWF)system,in which the wall panels are directly connected to the adjacent beams and foundation is presented herein.In the MRWF system,the unbonded post-tensioned(PT)tendons are used to ... A multiple rocking wall-frame(MRWF)system,in which the wall panels are directly connected to the adjacent beams and foundation is presented herein.In the MRWF system,the unbonded post-tensioned(PT)tendons are used to promote the self-centering ability,and O-shaped steel dampers are applied to enhance the energy dissipation capacity and reparability of the structure.First,analytical equations are proposed to determine the behavior of the O-shaped dampers.Then,the MRWF system is numerically evaluated for five different models consisting of rocking walls with varying numbers and arrangements while keeping the total effective width of wall panels constant.The numerical results show that with an increase in the number of wall panels and a decrease in the wall width,the hysteretic behavior of the MRWF system tends to the ideal flag-shaped pattern,resulting in little damage to the beams,insignificant strain in the wall toe,negligible residual drifts and damage index of less than 0.2 under severe earthquakes.In contrast,the conventional model demonstrates extensive damage to the structural elements due to undesirable wall-to-frame interaction,which leads to a damage index of 0.78 and residual drifts of 0.42%under seismic loads. 展开更多
关键词 precast wall-frame system rocking behavior post-tensIONING O-shaped steel damper residual drift
下载PDF
Stresses induced by post-tensioned anchor in jointed rock mass 被引量:9
7
作者 Alan Showkati Parviz Maarefvand Hossein Hassani 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1463-1476,共14页
A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivatio... A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM). 展开更多
关键词 post-tensioned anchor jointed rock stress distribution analytical solution tri-linear bond-slip model bond length bearing plate
下载PDF
Controlling of weld hot cracks of aluminum alloy sheets by transverse pre-stressing 被引量:1
8
作者 LIU Xuesong,ZHOU Guangtao,WANG Ping,and FANG Hongyuan State Key Laboratory of Advanced Welding Technology Production,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期157-161,共5页
A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-de... A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks. 展开更多
关键词 welding with transverse pre-stress weld hot cracks crack initiation rate
下载PDF
Unanticipated Bond Failure over Supporting Band Beams in Grouted Post-Tensioned Slab Tendons with Little or No Initial Prestress
9
作者 Raymond Ian Gilbert 《Journal of Civil Engineering and Architecture》 2013年第11期1343-1352,共10页
After grouting the ducts in a large band beam and one-way slab post-tensioned floor system in a large shopping mall (in excess of 1.5 km2 in plan), doubts arose concerning the level of initial prestress and the stre... After grouting the ducts in a large band beam and one-way slab post-tensioned floor system in a large shopping mall (in excess of 1.5 km2 in plan), doubts arose concerning the level of initial prestress and the strength and serviceability of the slabs was questioned. To assess the strength of the slabs, it was assumed, as a worst case scenario, that some spans may have been constructed with zero initial prestress. Load tests on prototype specimens, with similar dimensions and reinforcement quantities as the floor slabs, were performed to assess the stress development in initially unstressed, but fully grouted, tendons. Unexpected bond failures occurred at the junctions of slab and band beam where the abrupt change in section depth caused a sudden change in tendon stress. The maximum stress that was developed in the initially unstressed tendons at these locations was about 60% of the strength of the tendons. 展开更多
关键词 ANCHORAGE development length post-tensioned slabs stress development TENDONS unbonded construction.
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
10
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
开挖补偿法防控深部地下岩爆灾害——引汉济渭工程秦岭输水隧洞案例分析 被引量:1
11
作者 Jie Hu Manchao He +4 位作者 Hongru Li Zhigang Tao Dongqiao Liu Tai Cheng Di Peng 《Engineering》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control... Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway. 展开更多
关键词 ROCKBURST Excavation compensation method pre-stressed support Negative Poisson’s ratio bolt Tunnel boring machine
下载PDF
On calculating glacial isostatic adjustment
12
作者 L.M.Cathles 《Geodesy and Geodynamics》 EI CSCD 2024年第5期441-452,共12页
Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculati... Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application. 展开更多
关键词 Glacial isostatic adjustment Viscoelastic normal modes Hydrostatic pre-stress Elastic buoyancy Correspondence principle
下载PDF
Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt 被引量:9
13
作者 YANG Wen-dong LUO Guang-yu +4 位作者 BO Chun-jie WANG Ling Lü Xian-xian WANG Ying-nan WANG Xue-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3513-3530,共18页
Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock mas... Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling,slope treatment and mining engineering.To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts,in this study,uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles.ABAQUS software was used to verify and supplement the laboratory tests.The laws of the uniaxial compressive strength(UCS)obtained from the numerical simulations and laboratory tests were consistent.The results showed that under the same flaw angle,both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress.Under the same anchoring type,the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle.The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks.In addition,the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type,flaw angle,anchoring angle and bolt position. 展开更多
关键词 jointed rock mass pre-stressed bolt laboratory test numerical simulation
下载PDF
Strength weakening effect of high static pre-stressed granite subjected to low-frequency dynamic disturbance under uniaxial compression 被引量:6
14
作者 Wu-xing WU Feng-qiang GONG Quan JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2353-2369,共17页
This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granit... This study aimed to elucidate the strength weakening effect of high static pre-stressed rocks subjected to low-frequency disturbances under uniaxial compression.Based on the uniaxial compressive strength(UCS)of granite under static loading,70%,80%,and 90%of UCS were selected as the initial high static pre-stress(σ_(p)),and then the pre-stressed rock specimens were disturbed by sinusoidal stress with amplitudes of 30%,20%,and 10%of UCS under low-frequency frequencies(f)of 1,2,5,and 10 Hz,respectively.The results show that the rockburst failure of pre-stressed granite is caused by low-frequency disturbance,and the failure strength is much lower than UCS.When theσp or f is constant,the specimen strength gradually decreases as the f or σ_(p) increases.The experimental study illustrates the influence mechanism of the strength weakening effect of high static pre-stress rocks under low-frequency dynamic disturbance,that is,high static pre-stress is the premise and leading factor of rock strength weakening,while low-frequency dynamic disturbance induces rock failure and affects the strength weakening degree. 展开更多
关键词 deep rock high static pre-stress low-frequency dynamic disturbance strength weakening effect uniaxial compression ROCKBURST
下载PDF
RC beam strengthened with pre-stressed CFP under the secondary load 被引量:5
15
作者 LONG Bang-yun YUAN Guang-lin ZHU Dan-yu 《Journal of China University of Mining and Technology》 EI 2008年第4期618-622,共5页
Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying... Feasibility of using pre-stressed carbon fiber plates to strengthen reinforced concrete beams was studied. Based on the characteristics of carbon fiber plates, we developed a pre-stress clamp and a device for applying the pre-stress. Contrast tests were conducted between ordinary carbon fiber plates and a pre-stressed carbon fiber plate and between secondary loaded carbon fiber plates and a concrete beam strengthened with a secondary loaded carbon fiber plate. On this basis, we analyzed the failure pattern, the width of cracks and their distribution, the cracking load, the yield load, the limit load and the relation between load and deflec- tion. The results indicate that using pre-stressed carbon fiber plates to strengthen concrete beams is feasible and effective. 展开更多
关键词 pre-stress CFP secondary load strengthening RC beam
下载PDF
Initial pre-stress finding procedure and structural performance research for Levy cable dome based on linear adjustment theory 被引量:4
16
作者 ZHANG Li-mei CHEN Wu-jun DONG Shi-lin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1366-1372,共7页
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here... The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome. 展开更多
关键词 Linear adjustment theory Cable-strut structure Initial pre-stress Levy cable dome Structural performances analysis
下载PDF
Initial Pre-stress Finding and Structural Behaviors Analysis of Cable Net Based on Linear Adjustment Theory 被引量:4
17
作者 任涛 陈务军 付功义 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第2期155-160,共6页
The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method ... The tensile cable-strut structure is a self-equilibrate pre-stressed system.The initial pre-stress cal- culation is the fundamental structural analysis.A new numerical procedure was developed.The force density method is the cornerstone of analytical formula,and then introduced into linear adjustment theory;the least square least norm solution,the optimized initial pre-stress,is yielded.The initial pre-stress and structural performances of a particular single-layer saddle-shaped cable-net structure were analyzed with the developed method,which is proved to be efficient and correct.The modal analyses were performed with respect to various pre-stress levels.Finally,the structural performances were investigated comprehensively. 展开更多
关键词 linear adjustment theory tensile cable-net structure initial pre-stress single-layer saddle-shaped cable net structural performances analysis
下载PDF
Flexural Property of String Beam of Pre-Stressed Glulam Based on Influence of Regulation and Control 被引量:2
18
作者 Nan Guo Wenbo Wang Hongliang Zuo 《Structural Durability & Health Monitoring》 EI 2019年第2期143-179,共37页
Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined... Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood.However,when the glulam with low strength and the pre-stressed steel with high strength form combined members,materials of high strength can’t be fully utilized.Therefore,this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam.By regulating and controlling the pre-stress,a part of the load borne by the wood is allocated to the pre-stressed tendon,which is equivalent to completing a redistribution of internal force,thus realizing the repeated utilization of the wood strength and the full utilization of the strength of the high-strength pre-stressed tendon.The bending experiments of 10 beams under 5 working conditions are carried out.The failure mode,bearing capacity and deformation of the beams are analyzed.The results show that 90%of beams are deformed under compression.The ultimate load of the regulated and controlled beam is obviously larger than that of the unregulated beam,and the ultimate load of the beam increases with the increase of the degree of regulation and control.Compared with that of the unregulated beams,the ultimate load of beams regulated by 7.5%-30%increases by 25.42%-65.08%,and the regulated and controlled effect is obvious.With the increase of the regulation and control amplitude of pre-stress,the stiffness of string beam of pre-stressed glulam increases.In addition,with the increase of the regulation and control amplitude,the compression height of the beam increases before the failure,and it reaches the state of full-section compression at the time of failure,giving full play to the compressive property of the glulam.At the end of the experiment,the constitutive relation which can reflect the anisotropy of the wood is established combined with the experimental data.The finite element analysis of the beam under 7 working conditions is carried out by using ABAQUS finite element program,and the influence of the regulation and control amplitude on the stress distribution and ultimate bearing capacity of the beam is discussed. 展开更多
关键词 STRING beam of GLULAM FLEXURAL PROPERTY experimental study pre-stress REGULATION and control
下载PDF
Pre-Stressed Rope Reinforced Anti-Sliding Pile 被引量:1
19
作者 XU Jun WANG Chenghua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期887-891,共5页
Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performan... Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic. 展开更多
关键词 pre-stressed rope anti-sliding pile composite anti-sliding structure
下载PDF
Design and Preparation of High Elastic Modulus Self-compacting Concrete for Pre-stressed Mass Concrete Structures 被引量:1
20
作者 祝雯 CHEN Yang +4 位作者 LI Fangxian ZHANG Tongsheng HU Jie 韦江雄 YU Qijun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期563-573,共11页
Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be s... Requirements of self-compacting concrete (SCC) applied in pre-stressed mass concrete structures include high fluidity, high elastic modulus, low adiabatic temperature rise and low drying shrinkage, which cannot be satisfied by ordinary SCC. In this study, in order to solve the problem, a few principles of SCC design were proposed and the effects of binder amount, fly ash (FA) substitution, aggregate content and gradation on the workability, temperature rise, drying shrinkage and elastic modulus of SCC were investigated. The results and analysis indicate that the primary factor influencing the fluidity was paste content, and the main methods improving the elastic modulusof SCC were a lower sand ratio and an optimized coarse aggregate gradation. Lower adiabatic temperature rise and drying shrinkage were beneficial for decreasing the cement content. Further, based on the optimization of mixture, a C50 grade SCC (with binder amount of only 480 kg/ m3, fly ash substitution of 40%, sand ratio of 51% and proper coarse aggregate gradation (Vs.~0 mm: V10-16 ram: V16.20 mm= 30%: 30%:40%)) with superior workability was successfully prepared. The temperature rise and drying shrinkage of the prepared SCC were significantly reduced, and the elastic modulus reached 37.6 GPa at 28 d. 展开更多
关键词 self-compacting concrete pre-stressed mass structure high elastic modulus adiabatic temperature rise drying shrinkage
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部