In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on ...In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.展开更多
This paper reports a method for strand tension in anchor spans considering rotation.A kind of co-moved coordinate system,a saddle local coordinate system,was set up.This system implemented the rotation of the splay sa...This paper reports a method for strand tension in anchor spans considering rotation.A kind of co-moved coordinate system,a saddle local coordinate system,was set up.This system implemented the rotation of the splay saddle through the rotation of the coordinate system,and all calculations proceeded in this coordinate system.Considering the rotation of the anchoring surface by the rotation of the local coordinate system of the anchoring surface,the anchorage point coordinates of strands were transformed to the local sadle coordinate system.There was a two-layer iteration adopted in the calculation.In the inner iteration,the cable force at the end of the vertical bend was taken as the variable,and the ordinate of the anchorage point was taken as the target value.In the outer iteration,the vertical tangential angle at the end of the vertical bend was taken as the variable,and the ordinate of the anchorage point was taken as the target value.The method carried out the rotation of the splay saddle and anchor surface and was simple,convenient and without approximation.The effect of rotation was considered precisely;it showed stability during the process of two-layer iteration,powerful adaptation and higher efficiency and had been successfully applied in the construction control of the Wufengshan Yangtze River Bridge,the world's first kilometer-level combined highway and railway suspension bridge.展开更多
基金Supported by the National Key R&D Program of China(No.2022YFC3106005)the Shandong Provincial Natural Science Foundation(No.ZR2021MD122)+1 种基金the MNR Key Laboratory of Eco-Environmental Science and Technology,China(No.MEEST-2023-04)the Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation(No.201708)。
文摘In 2022,Yellow Sea green tide caused by Ulva prolifera reached a historic minimum and the coastal areas of Shandong Peninsula were less affected.However,the largest amount of seaweed biomass has been washed ashore on Lianyungang and Rizhao coasts since 2015.We studied the development pattern of Yellow Sea green tide in 2022,and analyzed the key environmental factors on the growth and drifting,then discussed the possible reasons that resulted in the massive stranding of green tide biomass in Lianyungang and Rizhao.Results show under the combined influence of the east to southeast winds and currents with shoreward anomalies,green tide drifted to the coastal waters between Shandong and Jiangsu provinces and the distribution areas located westward compared with previous years(2008–2021).Floating U.prolifera rafts from the coastal waters of Binhai and Sheyang drifted continuously into the coastal waters of Lianyungang and Rizhao,providing important supplements for Yellow Sea green tide.Because green tide in 2022 distributed close to the coastal waters,the abundant nutrients might support their continuous high growth rate.In addition,the amount of rainfall around Shandong Peninsula from late June to early July were significantly higher than in previous years,which might promote the development of green tide to some extent.
文摘This paper reports a method for strand tension in anchor spans considering rotation.A kind of co-moved coordinate system,a saddle local coordinate system,was set up.This system implemented the rotation of the splay saddle through the rotation of the coordinate system,and all calculations proceeded in this coordinate system.Considering the rotation of the anchoring surface by the rotation of the local coordinate system of the anchoring surface,the anchorage point coordinates of strands were transformed to the local sadle coordinate system.There was a two-layer iteration adopted in the calculation.In the inner iteration,the cable force at the end of the vertical bend was taken as the variable,and the ordinate of the anchorage point was taken as the target value.In the outer iteration,the vertical tangential angle at the end of the vertical bend was taken as the variable,and the ordinate of the anchorage point was taken as the target value.The method carried out the rotation of the splay saddle and anchor surface and was simple,convenient and without approximation.The effect of rotation was considered precisely;it showed stability during the process of two-layer iteration,powerful adaptation and higher efficiency and had been successfully applied in the construction control of the Wufengshan Yangtze River Bridge,the world's first kilometer-level combined highway and railway suspension bridge.