The postsynthetic modification (PSM) of metal-organic frameworks (MOFs) has emerged as a powerful tool to chemically tailor the interior of MOFs. In this review, we summarize the research progress of PSM of MOFs t...The postsynthetic modification (PSM) of metal-organic frameworks (MOFs) has emerged as a powerful tool to chemically tailor the interior of MOFs. In this review, we summarize the research progress of PSM of MOFs through click chemistry, including azide-alkyne click reaction and thiol-ene reaction.展开更多
Recently,research of crystalline-state transformation involving the removal/inclusion of guest molecules in porous coordination polymers(PCPs) was underway.Crystalline-state transformation,especially,single-crystal to...Recently,research of crystalline-state transformation involving the removal/inclusion of guest molecules in porous coordination polymers(PCPs) was underway.Crystalline-state transformation,especially,single-crystal to single-crystal(SC-SC) transformation as new method for the direct observation of host-guest chemistry,can reveal the intrinsic relevance and interaction between the framework and guest molecules.This review describes our work concerning PCPs and recent investigations of others,within the last four years,from the viewpoint of crystalline-state transformations of PCPs on guest removal or inclusion processes.Ligand substitution reaction and postsynthetic modification of PCPs in SC-SC fashion which were distinguished from conventional crystalline-state transformation triggered by guest removal or exchange were highlighted in this review.The research status of crystalline-state transformation in China was briefly introduced as well.Series of structure analysis techniques including single-crystal X-ray diffraction,powder X-ray diffraction,neutron diffraction,inelastic neutron scattering as well as the application of synchrotron radiation light source will inevitably promote the advance of study of crystalline-state transformation.And as a hotspot,deep investigations of crystalline-state transformation also help us to overcome the challenge of achieving multifunction and the correlation among them,such as sorption,magnetism,optical or electrical properties simultaneously in PCPs and contribute to design stimulate-oriented porous intelligent materials in the future.展开更多
The development of artificial enzyme mimics has been rapidly growing in recent years, and it is attracting increasing attention owing to their remarkable advantages over natural enzymes. Herein, we developed a general...The development of artificial enzyme mimics has been rapidly growing in recent years, and it is attracting increasing attention owing to their remarkable advantages over natural enzymes. Herein, we developed a general and facile method to fabricate efficient glutathione peroxidase (GPx) mimics by grafting selenium-containing molecules (phenylselenylbromide, PhSeBr) to a Zr(W)-based UiO-66-NH2 framework. In the presence of glutathione (GSH) serving as substrate, the fabricated UiO-66-Se catalysts can catalyze the reduction of hydroperoxides. The as-prepared UiO-66-Se systems show good catalytic activity over three cycles. These high-efficiency GPx mimic metal-organic frameworks (MOFs) are endowed with excellent thermal and structural stability, providing a promising avenue for the development of artificial enzyme mimics.展开更多
In this work,we report that high catalytic performance of metal–organic frameworks(MOFs)can be obtained through a synergistic effect of postsynthetic modification of MOF nanoparticles and liquid superwetting and conf...In this work,we report that high catalytic performance of metal–organic frameworks(MOFs)can be obtained through a synergistic effect of postsynthetic modification of MOF nanoparticles and liquid superwetting and confinement in the MOF coating.Specifically,2-ureido-4[1H]pyrimidinone(UPy)functionalized polysiloxanes were covalently appended onto the UiO-66 nanoparticles via a postsynthetic approach,which were further anchored onto different porous films through multivalent hydrogen bonding of the UPy motifs.The hydrophobic MOF coating can preserve the porosity of the solid substrates,enable rapid liquid superwetting and confinement within the porous substrates.Using the Knoevenagel condensation as a modeled system,robust and highly catalytic performances of the MOF coating were observed on a range of aldehyde substrates.Gram-scale production of chromene,a pharmaceutical which is typically synthesized via expensive catalysis,was successfully demonstrated on the MOF coating with high yielding rates,demonstrating the great potential of the MOF coating in pharmaceutical synthesis.展开更多
Encapsulation and controlled release of volatile molecules such as fragrances in a designed manner is important but challenging for the flavor and fragrance industry.Here,we report the tuning release of volatile molec...Encapsulation and controlled release of volatile molecules such as fragrances in a designed manner is important but challenging for the flavor and fragrance industry.Here,we report the tuning release of volatile molecules by postsynthetic modification of an amine-terminated metal-organic framework(MOF)MIL-101-NH_(2).By amidation,we obtained three MIL-101 MOFs,the trimethylacetamideterminated TC-MIL-101,the benzamide-terminated BC-MIL-101,and the oxalic acid monoamideterminated OC-MIL-101.All the MOFs can efficiently encapsulate volatile molecules.Moreover,we demonstrate that the release profile of volatiles can be widely tuned to sustain the release in several days to months and even over a year using different modified MIL-101 MOFs.We show that the release profiles are correlated with the binding energies between the guest volatiles and pores in MOFs.The pore diffusion and the synergistic transport are the rate-limiting step of the guest molecules from the modified MOFs.展开更多
基金We thank the funding supported by National Natural Science Foundation of China (No. 21572170), the Research Fund for the Doctoral Program of Higher Education of China (No. 20130141110008), and the Outstanding Youth Foundation of Hubei Province (No. 2015CFA045).
文摘The postsynthetic modification (PSM) of metal-organic frameworks (MOFs) has emerged as a powerful tool to chemically tailor the interior of MOFs. In this review, we summarize the research progress of PSM of MOFs through click chemistry, including azide-alkyne click reaction and thiol-ene reaction.
基金supported by the National Natural Science Foundation of China(91022015 & 20871034)Guangxi Science Foundation of China (0832001Z)the Program for New Century Excellent Talents in University of the Ministry of Education of China and Guangxi Province (NCET-07-217,2006201)
文摘Recently,research of crystalline-state transformation involving the removal/inclusion of guest molecules in porous coordination polymers(PCPs) was underway.Crystalline-state transformation,especially,single-crystal to single-crystal(SC-SC) transformation as new method for the direct observation of host-guest chemistry,can reveal the intrinsic relevance and interaction between the framework and guest molecules.This review describes our work concerning PCPs and recent investigations of others,within the last four years,from the viewpoint of crystalline-state transformations of PCPs on guest removal or inclusion processes.Ligand substitution reaction and postsynthetic modification of PCPs in SC-SC fashion which were distinguished from conventional crystalline-state transformation triggered by guest removal or exchange were highlighted in this review.The research status of crystalline-state transformation in China was briefly introduced as well.Series of structure analysis techniques including single-crystal X-ray diffraction,powder X-ray diffraction,neutron diffraction,inelastic neutron scattering as well as the application of synchrotron radiation light source will inevitably promote the advance of study of crystalline-state transformation.And as a hotspot,deep investigations of crystalline-state transformation also help us to overcome the challenge of achieving multifunction and the correlation among them,such as sorption,magnetism,optical or electrical properties simultaneously in PCPs and contribute to design stimulate-oriented porous intelligent materials in the future.
基金The project was supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Nos. 21425416 and 21625401), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21421064), the National Natural Science Foundation of China (Nos. 21574065, 21504043 and 21604038), the Jiangsu Provincial Founds for Distinguished Young Scholars (No. BK20140044) and NSF (No. BK20160975), the Program for Outstanding Young Scholars from the Organization Department of the CPC Central Committee, and the National Key Basic Research Program of China (Nos. 2013CB834502 and 2015CB932200).
文摘The development of artificial enzyme mimics has been rapidly growing in recent years, and it is attracting increasing attention owing to their remarkable advantages over natural enzymes. Herein, we developed a general and facile method to fabricate efficient glutathione peroxidase (GPx) mimics by grafting selenium-containing molecules (phenylselenylbromide, PhSeBr) to a Zr(W)-based UiO-66-NH2 framework. In the presence of glutathione (GSH) serving as substrate, the fabricated UiO-66-Se catalysts can catalyze the reduction of hydroperoxides. The as-prepared UiO-66-Se systems show good catalytic activity over three cycles. These high-efficiency GPx mimic metal-organic frameworks (MOFs) are endowed with excellent thermal and structural stability, providing a promising avenue for the development of artificial enzyme mimics.
基金X.Y.acknowledges the Research Grant Council of Hong Kong(Nos.11305219 and 11307220)CityU Applied Research Grant(ARG,No.9667203)+2 种基金Shenzhen Basic Research Program(No.JCYJ20210324134009024)Z.X.acknowledges a Shenzhen-HKMacao Science and Technology Grant(type CNo.SGDX2020110309300301)from the Science,Technology,and Innovation Commission of Shenzhen Municipality.
文摘In this work,we report that high catalytic performance of metal–organic frameworks(MOFs)can be obtained through a synergistic effect of postsynthetic modification of MOF nanoparticles and liquid superwetting and confinement in the MOF coating.Specifically,2-ureido-4[1H]pyrimidinone(UPy)functionalized polysiloxanes were covalently appended onto the UiO-66 nanoparticles via a postsynthetic approach,which were further anchored onto different porous films through multivalent hydrogen bonding of the UPy motifs.The hydrophobic MOF coating can preserve the porosity of the solid substrates,enable rapid liquid superwetting and confinement within the porous substrates.Using the Knoevenagel condensation as a modeled system,robust and highly catalytic performances of the MOF coating were observed on a range of aldehyde substrates.Gram-scale production of chromene,a pharmaceutical which is typically synthesized via expensive catalysis,was successfully demonstrated on the MOF coating with high yielding rates,demonstrating the great potential of the MOF coating in pharmaceutical synthesis.
基金supported by the National Key Research and Development Program of China(No.2016YFA0200301)the National Natural Science Foundation of China(Nos.21875211 and 51603181)。
文摘Encapsulation and controlled release of volatile molecules such as fragrances in a designed manner is important but challenging for the flavor and fragrance industry.Here,we report the tuning release of volatile molecules by postsynthetic modification of an amine-terminated metal-organic framework(MOF)MIL-101-NH_(2).By amidation,we obtained three MIL-101 MOFs,the trimethylacetamideterminated TC-MIL-101,the benzamide-terminated BC-MIL-101,and the oxalic acid monoamideterminated OC-MIL-101.All the MOFs can efficiently encapsulate volatile molecules.Moreover,we demonstrate that the release profile of volatiles can be widely tuned to sustain the release in several days to months and even over a year using different modified MIL-101 MOFs.We show that the release profiles are correlated with the binding energies between the guest volatiles and pores in MOFs.The pore diffusion and the synergistic transport are the rate-limiting step of the guest molecules from the modified MOFs.