Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series ...Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance.展开更多
基于文献中实测的载荷试验数据和计算数据,采用有限元软件ABAQUS建立三维模型进行计算分析,对Vesic、Hansen和Meyerhof三个理论公式预测粘性土地基极限承载力进行了比较,讨论了基础尺寸、基础埋深、土性参数等因素对预测结果的影响。结...基于文献中实测的载荷试验数据和计算数据,采用有限元软件ABAQUS建立三维模型进行计算分析,对Vesic、Hansen和Meyerhof三个理论公式预测粘性土地基极限承载力进行了比较,讨论了基础尺寸、基础埋深、土性参数等因素对预测结果的影响。结果表明:(1)这三个公式预测粘性土浅基础(D<B)极限承载力误差相对较小,但均不适用于粘性土深基础(D>B)。(2)对于粘性土浅基础,三个公式预测值总体上均偏大,一般Meyerhof公式误差最大,Vesic公式误差最小;当φ<25°、粘聚力c<20 k Pa时,各公式预测误差一般不超过10%;各公式预测误差随地基土内摩擦角和粘聚力增大而增大。展开更多
文摘Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance.
文摘基于文献中实测的载荷试验数据和计算数据,采用有限元软件ABAQUS建立三维模型进行计算分析,对Vesic、Hansen和Meyerhof三个理论公式预测粘性土地基极限承载力进行了比较,讨论了基础尺寸、基础埋深、土性参数等因素对预测结果的影响。结果表明:(1)这三个公式预测粘性土浅基础(D<B)极限承载力误差相对较小,但均不适用于粘性土深基础(D>B)。(2)对于粘性土浅基础,三个公式预测值总体上均偏大,一般Meyerhof公式误差最大,Vesic公式误差最小;当φ<25°、粘聚力c<20 k Pa时,各公式预测误差一般不超过10%;各公式预测误差随地基土内摩擦角和粘聚力增大而增大。