Molecular dynamics simulations were carried out to study the internal energy and microstructure of potassium dihydrogen phosphates (KDP) solution at different temperatures. The water molecule was treated as a simple...Molecular dynamics simulations were carried out to study the internal energy and microstructure of potassium dihydrogen phosphates (KDP) solution at different temperatures. The water molecule was treated as a simple-point-charge model, while a seven-site model for the dihydrogen phosphate ion was adopted. The internal energy functions and the radial distribution functions of the solution were studied in detail. An unusually large local particle number density fluctuation was observed in the system at saturation temperature. It has been found that the specific heat of oversaturated solution is higher than that of unsaturated solution, which indicates the solution experiences a crystallization process below saturation temperature. The radial distribution function between the oxygen atom of water and the hydrogen atom of the dihydrogen phosphate ion shows a very strong hydrogen bond structure. There are strong interactions between potassium cation and oxygen atom of dihydrogen phosphate ion in KDP solution, and much more ion pairs were formed in saturated solution.展开更多
Potassium dihydrogen phosphate (KDP) is an important electro-optic crystal, often used for frequency conversion and Pockels cells in large aperture laser systems. To investigate the influence of anisotropy to the de...Potassium dihydrogen phosphate (KDP) is an important electro-optic crystal, often used for frequency conversion and Pockels cells in large aperture laser systems. To investigate the influence of anisotropy to the depth of subsurface damage and the profiles of cracks in subsurface of KDP crystal, an experimental study was made to obtain the form of subsurface damage produced by scratches on KDP crystal in [100], [120] and [110] crystal directions on (001) crystal plane. The results indicated that there were great differences between depth and crack shape in different directions. For many slip planes in KDP, the plastic deformation and cracks generated under pressure in the subsurface were complex. Fluctuations of subsurface damage depth at transition point were attributed to the deformation of the surface which consumed more energy when the surface deformation changed from the mixed region of brittle and plastic to the complete brittle region along the scratch. Also, the process of subsurface damage from shallow to deep, from dislocation to big crack in KDP crystal with the increase of radial force and etch pit on different crystal plane were obtained. Because crystallographic orientation and processing orientation was different, etching pits on (100) crystal plane were quadrilateral while on (110) plane and (120) plane were trapezoidal and triangular, respectively.展开更多
A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH;PO;) under mi...A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH;PO;) under mild reaction conditions to afford the corresponding trisubstituted imidazole in excellent yields.The method for synthesis of product,the reaction mixture was reflux in ethanol for 40-90 min.The present method is simple,efficient,and cost-effective.展开更多
Deuterated potassium dihydrogen phosphate damage performance at 351 nm is studied on a large-aperture laser system. Bulk and rear-surface damage are initiated under the 3ω fluences of 6.T J/cm2 and 33/cm2, and show d...Deuterated potassium dihydrogen phosphate damage performance at 351 nm is studied on a large-aperture laser system. Bulk and rear-surface damage are initiated under the 3ω fluences of 6.T J/cm2 and 33/cm2, and show different growth characteristics under multiple laser irradiations with the fluence of 6 J/cm2. The size and number of bulk damage keep unchanged once initiated. However, surface damage size also does not grow, while surface damage number increases linearly with laser shots. Different damage thresholds and growth behaviors suggest different formations of bulk and surface damage precursors. The cause of surface damage is supposed to be near-surface absorbing particles buried under the sol-gel coating.展开更多
Laboratory batch experiments were conducted to study arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KHEPO4). Both H3PO4 and KHEPO4 prove...Laboratory batch experiments were conducted to study arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KHEPO4). Both H3PO4 and KHEPO4 proved to reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO4^3-). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 rain, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich model best described the kinetic data of As removal among the four models used in the kinetic study.展开更多
It has been a tremendous challenge to manu facture damage-free and smooth surfaces of potassium dihydrogen phosphate (KDP) crystals to meet the require ments of high-energy laser systems. The intrinsic issue is whethe...It has been a tremendous challenge to manu facture damage-free and smooth surfaces of potassium dihydrogen phosphate (KDP) crystals to meet the require ments of high-energy laser systems. The intrinsic issue is whether a KDP crystal can be plastically deformed so that the material can be removed in a ductile mode during the machining of KDP. This study investigates the room tem perature creep-deformation of KDP crystals with the aid of nanoindentation. A stress analysis was carried out to identify the creep mechanism. The results showed that KDP crystals could be plastically deformed at the nanoscale. Dislocation motion is responsible for creep-deformation. Both creep rate and creep depth decrease with decrease in peak force and loading rate. Dislocation nucleation and propagation bring about pop-ins in the load displacement curves during nanoindentation.展开更多
Potassium dihydrogen phosphate(KDP)crystals are widely used in laser ignition facilities as optical switching and frequency conversion components.These crystals are soft,brittle,and sensitive to external conditions(e....Potassium dihydrogen phosphate(KDP)crystals are widely used in laser ignition facilities as optical switching and frequency conversion components.These crystals are soft,brittle,and sensitive to external conditions(e.g.,humidity,temperature,and applied stress).Hence,conventional characterization methods,such as transmission electron microscopy,cannot be used to study the mechanisms of material deformation.Nevertheless,understanding the mechanism of plastic-brittle transition in KDP crystals is important to prevent the fracture damage during the machining process.This study explores the plastic deformation and brittle fracture mechanisms of KDP crystals through nanoindentation experiments and theoretical calculations.The results show that dislocation nucleation and propagation are the main mechanisms of plastic deformation in KDP crystals,and dislocation pileup leads to brittle fracture during nanoindentation.Nanoindentation experiments using various indenters indicate that the external stress fields influence the plastic deformation of KDP crystals,and plastic deformation and brittle fracture are related to the material's anisotropy.However,the E l Ning Hou 13b908074@hit.edu.cn Liang-Chi Zhang liangchi.zhang@unsw.edu.au 1 School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,People's Republic of China 2 School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136.People's Republic of China'Laboratory for Precision and Nano Processing Technologies,School of Mechanical and Manufacturing Engineering,The University of New South Wales,Sydney,NSW 2052,Australia effect of loading rate on the KDP crystal deformation is practically negligible.The results of this research provide important information on reducing machining-induced damage and further improving the optical performance of KDP crystal components.展开更多
Potassium dihydrogen phosphate(KDP)crystals play an important role in high-energy laser systems,but the laser damage threshold(LDT)of KDP components is lower than expected.The LDT is significantly influenced by subsur...Potassium dihydrogen phosphate(KDP)crystals play an important role in high-energy laser systems,but the laser damage threshold(LDT)of KDP components is lower than expected.The LDT is significantly influenced by subsurface damage produced in KDP crystals.However,it is very challenging to detect the subsurface damage caused by processing because a KDP is soft,brittle,and sensitive to the external environment(e.g.,humidity,temperature and applied stress).Conventional characterization methods such as transmission electron microscopy are ineffective for this purpose.This paper proposes a nondestructive detection method called grazing incidence X-ray diffraction(GIXD)to investigate the formation of subsurface damage during ultra-precision fly cutting of KDP crystals.Some crystal planes,namely(200),(112),(312),(211),(220),(202),(301),(213),(310)and(303),were detected in the processed subsurface with the aid of GIXD,which provided very different results for KDP crystal bulk.These results mean that single KDP crystals change into a lattice misalignment structure(LMS)due to mechanical stress in the subsurface.These crystal planes match the slip systems of the KDP crystals,implying that dislocations nucleate and propagate along slip systems to result in the formation of the LMS under shear and compression stresses.The discovery of the LMS in the subsurface provides a new insight into the nature of the laser-induced damage of KDP crystals.展开更多
A high-efficiency polishing approach using two-phase air–water fluid(TAWF)is proposed to avoid surface contamination and solve the inefficiency of previous water-dissolution polishing techniques for potassium dihydro...A high-efficiency polishing approach using two-phase air–water fluid(TAWF)is proposed to avoid surface contamination and solve the inefficiency of previous water-dissolution polishing techniques for potassium dihydrogen phosphate(KDP)crystal.In the proposed method,controllable deliquescence is implemented without any chemical impurity.The product of deliquescence is then removed by a polishing pad to achieve surface planarization.The mechanism underlying TAWF polishing is analyzed,a special device is built to polish the KDP crystal,and the effect of relative humidity(RH)on polishing performance is studied.The relationship between key parameters of polishing and surface planarization is also investigated.Results show that the polishing performance is improved with increasing RH.However,precisely controlling the RH is extremely difficult during TAWF polishing.Controllable deliquescence can easily be disrupted once the RH fluctuates,which therefore needs to be restricted to a low level to avoid its influence on deliquescence rate.The material removal of TAWF polishing is mainly attributed to the synergistic effect of deliquescence and the polishing pad.Excessive polishing pressure and revolution rate remarkably reduce the life of the polishing pad and the surface quality of the KDP crystal.TAWF polishing using IC-1000 and TEC-168S increase the machining efficiency by 150%,and a smooth surface with a root mean square surface roughness of 5.5 nm is obtained.展开更多
Potassium dihydrogen phosphate(KDP)crystals are important materials in high-energy laser systems.However,because these crystals are brittle and soft,machining-induced defects often emerge in KDP components.This study ...Potassium dihydrogen phosphate(KDP)crystals are important materials in high-energy laser systems.However,because these crystals are brittle and soft,machining-induced defects often emerge in KDP components.This study aimed to investigate the material removal mechanisms and characteristics of KDP during nanoscratching using Berkovich,spherical,and conical indenters.We found that KDP surface layers could be removed in a ductile mode at the micro/nanoscale and that dislocation motion was one of the main removal mechanisms.Removal characteristics are related to the stress fields generated by indenter geometries.The spherical indenter achieved a ductile removal mode more easily.The lateral force of nanoscratching increased with an increase in the normal force.The coefficient of friction(COF)followed the same trend as the lateral force when spherical and conical indenters were used.However,the COF was independent of the normal force when using a Berkovich indenter.We found that these COF variations could be accurately described by friction models.展开更多
文摘Molecular dynamics simulations were carried out to study the internal energy and microstructure of potassium dihydrogen phosphates (KDP) solution at different temperatures. The water molecule was treated as a simple-point-charge model, while a seven-site model for the dihydrogen phosphate ion was adopted. The internal energy functions and the radial distribution functions of the solution were studied in detail. An unusually large local particle number density fluctuation was observed in the system at saturation temperature. It has been found that the specific heat of oversaturated solution is higher than that of unsaturated solution, which indicates the solution experiences a crystallization process below saturation temperature. The radial distribution function between the oxygen atom of water and the hydrogen atom of the dihydrogen phosphate ion shows a very strong hydrogen bond structure. There are strong interactions between potassium cation and oxygen atom of dihydrogen phosphate ion in KDP solution, and much more ion pairs were formed in saturated solution.
基金supported by Key National Natural Science Foundation of China (Grant No. 50535020)
文摘Potassium dihydrogen phosphate (KDP) is an important electro-optic crystal, often used for frequency conversion and Pockels cells in large aperture laser systems. To investigate the influence of anisotropy to the depth of subsurface damage and the profiles of cracks in subsurface of KDP crystal, an experimental study was made to obtain the form of subsurface damage produced by scratches on KDP crystal in [100], [120] and [110] crystal directions on (001) crystal plane. The results indicated that there were great differences between depth and crack shape in different directions. For many slip planes in KDP, the plastic deformation and cracks generated under pressure in the subsurface were complex. Fluctuations of subsurface damage depth at transition point were attributed to the deformation of the surface which consumed more energy when the surface deformation changed from the mixed region of brittle and plastic to the complete brittle region along the scratch. Also, the process of subsurface damage from shallow to deep, from dislocation to big crack in KDP crystal with the increase of radial force and etch pit on different crystal plane were obtained. Because crystallographic orientation and processing orientation was different, etching pits on (100) crystal plane were quadrilateral while on (110) plane and (120) plane were trapezoidal and triangular, respectively.
文摘A simple and efficient method has been developed;benzil/benzoin undergoes smooth condensation with various substituted aldehyde and ammonium acetate in the presence of potassium dihydrogen phosphate(KH;PO;) under mild reaction conditions to afford the corresponding trisubstituted imidazole in excellent yields.The method for synthesis of product,the reaction mixture was reflux in ethanol for 40-90 min.The present method is simple,efficient,and cost-effective.
基金Supported by the National Natural Science Foundation of China under Grant No 61505187
文摘Deuterated potassium dihydrogen phosphate damage performance at 351 nm is studied on a large-aperture laser system. Bulk and rear-surface damage are initiated under the 3ω fluences of 6.T J/cm2 and 33/cm2, and show different growth characteristics under multiple laser irradiations with the fluence of 6 J/cm2. The size and number of bulk damage keep unchanged once initiated. However, surface damage size also does not grow, while surface damage number increases linearly with laser shots. Different damage thresholds and growth behaviors suggest different formations of bulk and surface damage precursors. The cause of surface damage is supposed to be near-surface absorbing particles buried under the sol-gel coating.
基金This work was supported by the National Natural Science Foundation of China(No.20677080,20477055).
文摘Laboratory batch experiments were conducted to study arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KHEPO4). Both H3PO4 and KHEPO4 proved to reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO4^3-). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 rain, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich model best described the kinetic data of As removal among the four models used in the kinetic study.
基金National Nature Science Foundation of China (Grant Nos. 51875137 and 51375122)Heilongjiang Natural Science Foundation (Grant No. E2018033)Australian Research Council (Grant No. DP 170100567).
文摘It has been a tremendous challenge to manu facture damage-free and smooth surfaces of potassium dihydrogen phosphate (KDP) crystals to meet the require ments of high-energy laser systems. The intrinsic issue is whether a KDP crystal can be plastically deformed so that the material can be removed in a ductile mode during the machining of KDP. This study investigates the room tem perature creep-deformation of KDP crystals with the aid of nanoindentation. A stress analysis was carried out to identify the creep mechanism. The results showed that KDP crystals could be plastically deformed at the nanoscale. Dislocation motion is responsible for creep-deformation. Both creep rate and creep depth decrease with decrease in peak force and loading rate. Dislocation nucleation and propagation bring about pop-ins in the load displacement curves during nanoindentation.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.51875137 and 51905356)the Natural Science Foundation of Heilongjiang Province(Grant No.E2018033)the Australian Research Council(ARC)(Grant No.DP 170100567).The authors thank Wei-Dong Liu and Zhong-Huai Wu for calculating the first pop-in event in this study.
文摘Potassium dihydrogen phosphate(KDP)crystals are widely used in laser ignition facilities as optical switching and frequency conversion components.These crystals are soft,brittle,and sensitive to external conditions(e.g.,humidity,temperature,and applied stress).Hence,conventional characterization methods,such as transmission electron microscopy,cannot be used to study the mechanisms of material deformation.Nevertheless,understanding the mechanism of plastic-brittle transition in KDP crystals is important to prevent the fracture damage during the machining process.This study explores the plastic deformation and brittle fracture mechanisms of KDP crystals through nanoindentation experiments and theoretical calculations.The results show that dislocation nucleation and propagation are the main mechanisms of plastic deformation in KDP crystals,and dislocation pileup leads to brittle fracture during nanoindentation.Nanoindentation experiments using various indenters indicate that the external stress fields influence the plastic deformation of KDP crystals,and plastic deformation and brittle fracture are related to the material's anisotropy.However,the E l Ning Hou 13b908074@hit.edu.cn Liang-Chi Zhang liangchi.zhang@unsw.edu.au 1 School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,People's Republic of China 2 School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136.People's Republic of China'Laboratory for Precision and Nano Processing Technologies,School of Mechanical and Manufacturing Engineering,The University of New South Wales,Sydney,NSW 2052,Australia effect of loading rate on the KDP crystal deformation is practically negligible.The results of this research provide important information on reducing machining-induced damage and further improving the optical performance of KDP crystal components.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51875137)the Natural Science Foundation of Heilongjiang Province(Grant No.E2018033)Australian Research Council(Grant No.DP 170100567).
文摘Potassium dihydrogen phosphate(KDP)crystals play an important role in high-energy laser systems,but the laser damage threshold(LDT)of KDP components is lower than expected.The LDT is significantly influenced by subsurface damage produced in KDP crystals.However,it is very challenging to detect the subsurface damage caused by processing because a KDP is soft,brittle,and sensitive to the external environment(e.g.,humidity,temperature and applied stress).Conventional characterization methods such as transmission electron microscopy are ineffective for this purpose.This paper proposes a nondestructive detection method called grazing incidence X-ray diffraction(GIXD)to investigate the formation of subsurface damage during ultra-precision fly cutting of KDP crystals.Some crystal planes,namely(200),(112),(312),(211),(220),(202),(301),(213),(310)and(303),were detected in the processed subsurface with the aid of GIXD,which provided very different results for KDP crystal bulk.These results mean that single KDP crystals change into a lattice misalignment structure(LMS)due to mechanical stress in the subsurface.These crystal planes match the slip systems of the KDP crystals,implying that dislocations nucleate and propagate along slip systems to result in the formation of the LMS under shear and compression stresses.The discovery of the LMS in the subsurface provides a new insight into the nature of the laser-induced damage of KDP crystals.
基金The authors would like to appreciate the financial support from the National Natural Science Foundation of China(Grant Nos.51135002 and 51621064).
文摘A high-efficiency polishing approach using two-phase air–water fluid(TAWF)is proposed to avoid surface contamination and solve the inefficiency of previous water-dissolution polishing techniques for potassium dihydrogen phosphate(KDP)crystal.In the proposed method,controllable deliquescence is implemented without any chemical impurity.The product of deliquescence is then removed by a polishing pad to achieve surface planarization.The mechanism underlying TAWF polishing is analyzed,a special device is built to polish the KDP crystal,and the effect of relative humidity(RH)on polishing performance is studied.The relationship between key parameters of polishing and surface planarization is also investigated.Results show that the polishing performance is improved with increasing RH.However,precisely controlling the RH is extremely difficult during TAWF polishing.Controllable deliquescence can easily be disrupted once the RH fluctuates,which therefore needs to be restricted to a low level to avoid its influence on deliquescence rate.The material removal of TAWF polishing is mainly attributed to the synergistic effect of deliquescence and the polishing pad.Excessive polishing pressure and revolution rate remarkably reduce the life of the polishing pad and the surface quality of the KDP crystal.TAWF polishing using IC-1000 and TEC-168S increase the machining efficiency by 150%,and a smooth surface with a root mean square surface roughness of 5.5 nm is obtained.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.51905356 and 51875137)the Doctoral Startup Foundation of Liaoning Province(Grant No.2020-BS-178)+1 种基金the Open Foundation of the Key Laboratory of Fundamental Science for the National Defense of Aeronautical Digital Manufacturing Process of Shenyang Aerospace University(Grant No.SHSYS202002)the Specific Discipline of Guangdong Province(Grant No.2020ZDZX2006).
文摘Potassium dihydrogen phosphate(KDP)crystals are important materials in high-energy laser systems.However,because these crystals are brittle and soft,machining-induced defects often emerge in KDP components.This study aimed to investigate the material removal mechanisms and characteristics of KDP during nanoscratching using Berkovich,spherical,and conical indenters.We found that KDP surface layers could be removed in a ductile mode at the micro/nanoscale and that dislocation motion was one of the main removal mechanisms.Removal characteristics are related to the stress fields generated by indenter geometries.The spherical indenter achieved a ductile removal mode more easily.The lateral force of nanoscratching increased with an increase in the normal force.The coefficient of friction(COF)followed the same trend as the lateral force when spherical and conical indenters were used.However,the COF was independent of the normal force when using a Berkovich indenter.We found that these COF variations could be accurately described by friction models.