Here, we present an optimization of colorimetric determination of hydrogen peroxide content in plants using potassium iodide. Our method is based on a one step buffer (extraction and reaction) for the determination of...Here, we present an optimization of colorimetric determination of hydrogen peroxide content in plants using potassium iodide. Our method is based on a one step buffer (extraction and reaction) for the determination of H2O2 in different plant tissues and overcomes interference of soluble antioxidant and color background. A particular attention is paid to buffer pH shown to be tissue dependent. With this inexpensive microplate method, it is possible to analyze 12 experimental samples in about 45 min all in triplicates, with blanks, controls and standard curve.展开更多
Enargite is typically associated with chalcocite.Owing to the similarity in the flotation behaviors of these minerals,both minerals are reported to concentrate in the conventional flotation circuit.However,inorganic a...Enargite is typically associated with chalcocite.Owing to the similarity in the flotation behaviors of these minerals,both minerals are reported to concentrate in the conventional flotation circuit.However,inorganic arsenic in enargite can decrease the copper concentrate quality and increase the operating cost of processing this concentrate.Separating these minerals is important for cleaner copper production to avoid these effects.In this context,this study investigated the effect of hydrogen peroxide(H_(2)O_(2))treatment on the flotation behavior of chalcocite and enargite.Flotation tests of pure and mixed minerals indicated that H_(2)O_(2)treatment reduced the floatability of chalcocite and enargite by forming sulfate and copper hydroxide on their surfaces.Despite the detrimental effect of the H_(2)O_(2)treatment,there was a narrow window of H_(2)O_(2)concentration for separating both minerals,in which enargite floated and chalcocite was depressed.This selective flotation behavior was caused by the rapid adsorption of potassium amyl xanthate(KAX)and lower surface oxidation of enargite compared with that of chalcocite.展开更多
文摘Here, we present an optimization of colorimetric determination of hydrogen peroxide content in plants using potassium iodide. Our method is based on a one step buffer (extraction and reaction) for the determination of H2O2 in different plant tissues and overcomes interference of soluble antioxidant and color background. A particular attention is paid to buffer pH shown to be tissue dependent. With this inexpensive microplate method, it is possible to analyze 12 experimental samples in about 45 min all in triplicates, with blanks, controls and standard curve.
基金Sumitomo Metal Mining Co.,Ltd.,Japan International Cooperation Agency(JICA),and a Grant-inAid for Science Research(JSPS KAKENHI)from the Japan Society for the Promotion of Science(JSPS)(Nos.JP22K14636,JP22H00310 and JP19H02659)This work was partly supported by Advanced Research Infrastructure for Materials and Nanotechnology(No.JPMXP1222KU1009)in Japan sponsored by the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan.
文摘Enargite is typically associated with chalcocite.Owing to the similarity in the flotation behaviors of these minerals,both minerals are reported to concentrate in the conventional flotation circuit.However,inorganic arsenic in enargite can decrease the copper concentrate quality and increase the operating cost of processing this concentrate.Separating these minerals is important for cleaner copper production to avoid these effects.In this context,this study investigated the effect of hydrogen peroxide(H_(2)O_(2))treatment on the flotation behavior of chalcocite and enargite.Flotation tests of pure and mixed minerals indicated that H_(2)O_(2)treatment reduced the floatability of chalcocite and enargite by forming sulfate and copper hydroxide on their surfaces.Despite the detrimental effect of the H_(2)O_(2)treatment,there was a narrow window of H_(2)O_(2)concentration for separating both minerals,in which enargite floated and chalcocite was depressed.This selective flotation behavior was caused by the rapid adsorption of potassium amyl xanthate(KAX)and lower surface oxidation of enargite compared with that of chalcocite.