期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Potassium accumulation and translocation a mongrice genotypes in relation to internal potassium use efficiency(IKUE)
1
作者 LIU Jianxiang YANG Xiao’e Wu Lianghuan YANG Yu’ai College of Environmental and Resource Sciences,Zhejiang Univ,Hangzhou 310029,China 《Chinese Rice Research Newsletter》 2001年第1期10-11,共2页
Abiotie stresses including potassium deficiency are limitingfactors for increasing rice yield.Nine rice genotypes(Oryza Sativa L.,indica)differing in sensitivity to low Kstress selected from 200 volume-solution screen... Abiotie stresses including potassium deficiency are limitingfactors for increasing rice yield.Nine rice genotypes(Oryza Sativa L.,indica)differing in sensitivity to low Kstress selected from 200 volume-solution screening wereused in this study to examine accumulation and transloca-tion ofK.The powdery-muddy paddy soil tested contained 30.6mg·kgavailable K(1 N NHAcO extracted),1.92% 展开更多
关键词 IKUE potassium accumulation and translocation a mongrice genotypes in relation to internal potassium use efficiency than
下载PDF
Study on the Nutrition Characteristics of Different K Use Efficiency Cotton Genotypes to K Deficiency Stress 被引量:9
2
作者 JIANG Cun-cang CHEN Fang +4 位作者 GAO Xiang-zhao LU Jian-wei WAN Kai-yuan NIAN Fu-zhao WANG Yun-hua 《Agricultural Sciences in China》 CAS CSCD 2008年第6期740-745,共6页
To study the mechanism of plant K use efficiency, both K high and low use efficiency cotton genotypes, 103 and 122, respectively, were selected from 86 cotton cultivars (Gossypium hirsutum L.). The research was cond... To study the mechanism of plant K use efficiency, both K high and low use efficiency cotton genotypes, 103 and 122, respectively, were selected from 86 cotton cultivars (Gossypium hirsutum L.). The research was conducted using pot experiment for planting cotton on without K (0.0 g kg-1 soil) and with K (0.4 g kg-1 soil) treatments in 2005. Experimental result showed that, with K deficiency stress, genotype 103 grew much better than genotype 122 except that its lower leaves showed the symptoms of K deficiency, whereas all the leaves of genotype 122 showed the symptoms of K deficiency. Root dry matter weights of treatments for genotype 103 with and without K application were 1.07 and 1.25 times of genotype 122. It indicated that the root system of genotype 103 was well developed and has better nutrition uptake capability than that of genotype 122. The result also showed that the cotton shoots of genotype 103 were 1.07 and 1.13 times over genotype 122 on treatments of with and without K application. It indicated that genotype 103 has stronger transport organs. In genotype 103, plants, dry matter, and potassium were mainly transported to cotton bolls. The boll dry weight of genotype 103 was 2.58 times in without K treatment and 1.90 times in with K treatment over genotype 122. The potassium accumulation in bolls of genotype 122 was only 49.3% of that in genotype 103. Potassium accumulation in the other organs of genotype 103 was relatively low compared with in bolls. This indicated that the distribution of K and organic matter in genotype 103 was more efficient than genotype 122. The main differences between high K efficiency cotton genotype 103 and low K efficiency genotype 122 lie in their potassium nutrition and organic matter using efficiency on uptake, transportation, accumulation, distribution, and utilization. 展开更多
关键词 cotton (Gossypium hirsutum L.) potassium use efficiency GENOTYPE uptake capability distribution ability
下载PDF
Gene expression pattern of K transporter GhHAK5 gene of potassium efficient and in-efficient cotton cultivars based on morphological physiognomies as affected by potassium nutrition and reduced irrigation 被引量:1
3
作者 AKHTAR Muhammad Naeem HAQ Tanveer ul +1 位作者 AKHTAR Muhammad Waseem ABBASS Ghulam 《Journal of Cotton Research》 CAS 2023年第3期166-185,共20页
Background Under K deficiency the uptake and distribution pattern in plant cells is mediated through different transport proteins and channels which were controlled by specific gene family.Therefore,a hydroponic exper... Background Under K deficiency the uptake and distribution pattern in plant cells is mediated through different transport proteins and channels which were controlled by specific gene family.Therefore,a hydroponic experiment was conducted under control condition for testing the gene expression pattern of the K transporter under adequate and low K supply levels.After that,a 2-year field experiment was conducted to evaluate five selected cotton cultivars(four K-efficient cultivars,viz.,CIM-554,CYTO-124,FH-142,IUB-2013,and one K non-efficient,BH-212) screened from the initial hydroponics culture experiment and two levels of potassium(0 K_(2)O kg·ha^(-1) and 50 K_(2)O kg·ha^(-1)) were tested under reduced irrigation(50% available water content;50 AWC) and normal irrigation conditions(100% available water content;100 AWC).Result Results revealed that the transcript levels of GhHAK5aD in roots were significantly higher in K^(+) efficient cultivars than that in K^(+) non-efficient cultivars.The GhHAK5aD expression upon K^(+) deficiency was higher in roots but lower in shoots,indicating that GhHAK5aD could have a role in K^(+) uptake in roots,instead of transport of K^(+) from root to shoot.Similarly,under field conditions the cultivar FH-142 showed an increase of 22.3%,4.9%,2.4%,and 1.4% as compared with BH-212,IUB-2013,CYTO-124,and CIM-554,respectively,in seed cotton yield(SCY) with K application under reduced irrigation conditions.With applied K,the FH-142 showed an increase in net photosynthetic rate by 57.3% as compared with the rest of the cultivars under reduced irrigation over K control.However,the overall performance indicators of K-efficient cultivars like FH-142,CYTO-124,CIM-554,and IUB-2013 were better than BH-212(K in-efficient) under reduced irrigation conditions with applied K at 50 kg·ha^(-1).Fiber quality trait improved significantly with K application under water deficit.The increase in micronaire was 3.6%,4.7%,7.8%,3.4%,and 6.7% in BH-212,IUB-2013,CIM-554,CYTO-124,and FH-142,respectively,with K application at 50 kg·ha^(-1) over without K application under reduced irrigation conditions during the cotton growing season.Similarly,the cultivars FH-142 increased by 12% with K application under reduced irrigation as compared with other cultivars.The performance of K-efficient cultivars under reduced irrigation conditions was 30% better in SCY and quality traits with the application of K at 50 kg·ha^(-1) as compared with K-non-efficient cultivars.Similarly,water use efficiency(WUE)(40.1%) and potassium use efficiency(KUE)(20.2%) were also noted higher in case of FH-142 as compared with other cultivar with K application under reduced conditions.Conclusion Higher expression of GhHAK5aD gene was observed in K-efficient cultivars as compared with K-nonefficient cultivars in roots indicates that GhHAK5aD may be contributing to genotypic differences for K^(+) efficiency in cotton.K-efficient cotton cultivars can be used for the low-K environments and can also be recommended for general cultivars. 展开更多
关键词 COTTON K-efficient cultivars DROUGHT potassium use efficiency WUE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部