The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages...Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
基金The Special Basic Research Fund for Central Public Research Institutes (First Institute of Oceanograpgy,State Oceanic Administration)under contract No.GY02 -2008G38the Special Plan of Science and Technology Generalship in Qingdao under contract No.05-2 -JC-79the Special Project of Technical Foundational Work and Social Public Welfare Research under contract No.2003DIB3J114
文摘Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.