In this paper,a low-cost and environmental-friendly leaching agent citric acid(C_(6)H_(8)O_(7))was used to treat the sediment of Dianchi Lake(SDL)to synthesize lithium silicate(Li_(4)SiO_(4))based CO_(2)sorbent.The re...In this paper,a low-cost and environmental-friendly leaching agent citric acid(C_(6)H_(8)O_(7))was used to treat the sediment of Dianchi Lake(SDL)to synthesize lithium silicate(Li_(4)SiO_(4))based CO_(2)sorbent.The results were compared with that treated with strong acid.Moreover,the effects of preparation conditions,sorption conditions and desorption conditions on the CO_(2)sorption performance of prepared Li_(4)SiO_(4)were systematically studied.Under optimal conditions,the Li_(4)SiO_(4)sorbent was successfully synthesized and its CO_(2)sorption capacity reached 31.37%(mass),which is much higher than that synthesized from SDL treated with strong acid.It is speculated that the presence of some elements after C_(6)H_(8)O_(7)treatment may promote the sorption of synthetic Li_(4)SiO_(4)to CO_(2).In addition,after doping with K_(2)CO_(3),the CO_(2)uptake increases from the original 12.02%and 22.12%to 23.96%and 32.41%(mass)under the 20%and 50%CO_(2)partial pressure,respectively.More importantly,after doping K_(2)CO_(3),the synthesized Li_(4)SiO_(4)has a high cyclic stability under the low CO_(2)partial pressure.展开更多
Ammoniated bagasse is a plant-derived organic sorbent that can be used for capturing oil and for supplying slow-release nutrients to oil-degrading microorganisms. We investigated the oil-wicking behavior of this sorbe...Ammoniated bagasse is a plant-derived organic sorbent that can be used for capturing oil and for supplying slow-release nutrients to oil-degrading microorganisms. We investigated the oil-wicking behavior of this sorbent under various conditions for its effectiveness in remediating oil-contaminated wetlands. Abiotic microcosms simulating a wetland environment were used to assess the influence of sand particle sizes (20x30 and 60x80 U.S. mesh), degrees of oil saturation (25% and 75%), water table levels (on top of the clean sand layer, oiled-sand layer, and sorbent layer), and the presence of sorbent. Results indicated that oil wicking favors higher oil contamination, larger sand particle size, and low water coverage. Water coverage was the predominant factor limiting the effectiveness of sorbent. The most plausible explanation for this limitation was that sorbent captured more water than oil at higher water coverage.展开更多
基金the financial support from National Natural Science Foundation of China(21868015,51802135)the Applied Basic Research Programs of Yunnan Province(140520210057)+1 种基金Taif University Researchers Supporting Project number(TURSP-2020/163)Taif University,Taif,Saudi Arabia。
文摘In this paper,a low-cost and environmental-friendly leaching agent citric acid(C_(6)H_(8)O_(7))was used to treat the sediment of Dianchi Lake(SDL)to synthesize lithium silicate(Li_(4)SiO_(4))based CO_(2)sorbent.The results were compared with that treated with strong acid.Moreover,the effects of preparation conditions,sorption conditions and desorption conditions on the CO_(2)sorption performance of prepared Li_(4)SiO_(4)were systematically studied.Under optimal conditions,the Li_(4)SiO_(4)sorbent was successfully synthesized and its CO_(2)sorption capacity reached 31.37%(mass),which is much higher than that synthesized from SDL treated with strong acid.It is speculated that the presence of some elements after C_(6)H_(8)O_(7)treatment may promote the sorption of synthetic Li_(4)SiO_(4)to CO_(2).In addition,after doping with K_(2)CO_(3),the CO_(2)uptake increases from the original 12.02%and 22.12%to 23.96%and 32.41%(mass)under the 20%and 50%CO_(2)partial pressure,respectively.More importantly,after doping K_(2)CO_(3),the synthesized Li_(4)SiO_(4)has a high cyclic stability under the low CO_(2)partial pressure.
基金funding was provided by the U.S. Environmental Protection Agency under EP-C-05-056,WA 1-17
文摘Ammoniated bagasse is a plant-derived organic sorbent that can be used for capturing oil and for supplying slow-release nutrients to oil-degrading microorganisms. We investigated the oil-wicking behavior of this sorbent under various conditions for its effectiveness in remediating oil-contaminated wetlands. Abiotic microcosms simulating a wetland environment were used to assess the influence of sand particle sizes (20x30 and 60x80 U.S. mesh), degrees of oil saturation (25% and 75%), water table levels (on top of the clean sand layer, oiled-sand layer, and sorbent layer), and the presence of sorbent. Results indicated that oil wicking favors higher oil contamination, larger sand particle size, and low water coverage. Water coverage was the predominant factor limiting the effectiveness of sorbent. The most plausible explanation for this limitation was that sorbent captured more water than oil at higher water coverage.