[Objectives]This study was conducted to investigate the appropriate addition amounts of lactic acid bacteria and cellulase in the mixed silage of potato plants,so as to provide a basis for the rational use of potato p...[Objectives]This study was conducted to investigate the appropriate addition amounts of lactic acid bacteria and cellulase in the mixed silage of potato plants,so as to provide a basis for the rational use of potato plants.[Methods]Fresh potato(Solanum tuberosum)seedling plants,watermelon(Citrullus lanatus)plants,and melon(Cucumis melo)plants were selected as raw materials for silage,each of which was added at a ratio of 32%,and 4%of brown flour was added additionally.On this basis,an L 9(32)orthogonal experiment was designed to investigate the effects of the amount of lactic acid bacteria(10,20,30 g/kg)and the amount of cellulase(5,10,15 g/kg)on the experimental results with sensory evaluation score as an investigation index.[Results]With the increase of the amount of lactic acid bacteria and the amount of cellulase,the sensory evaluation score of silage increased,and it was the highest when the amount of lactic acid bacteria added was 20 g/kg and the amount of cellulose was 10 g/kg.With the increase of the amounts of lactic acid bacteria and cellulase added,ammonia nitrogen showed a decreasing trend,and the pH and ammonia nitrogen were the lowest when the amount of lactic acid bacteria added was 20 g/kg and the amount of cellulose was 10 g/kg.[Conclusions]This study provides a theoretical basis for the rational use of effective ingredients and nutrients in potato plants and the development of new feed resources.展开更多
Tri-trophic interactions between fertilizer applications, cotton aphid (Aphis gossypii Golver) and associated beneficial insects were studied to investigate direct and indirect effects of fertilizers (types and ratios...Tri-trophic interactions between fertilizer applications, cotton aphid (Aphis gossypii Golver) and associated beneficial insects were studied to investigate direct and indirect effects of fertilizers (types and ratios) on potato plants under field and greenhouse conditions, A. gossypii and associated beneficial insects. Fertilizers regimes showed direct impacts on the potato plant phenology and indirect effects on both A. gossypii population and the associated beneficial insects. Our data indicated that potato plants had been influenced by fertilizer elements used within tri-trophic system comprising potato plants, cotton aphid, and certain associated beneficial insects. This demonstrates that a bottom-up interaction is robust and has a particular value in the attraction of beneficial insects towards the potato plant signals due to used fertilizers which can also have a function when plants are attacked by A. gossypii. Yet, flexibility in the use of fertilizers (as chemical cues) is conserved, and that may help beneficial insects to specifically focus on the odor of plants that carry potential plant hosts and avoid plants that are only attacked by non-hosts. These results support the still controversial notion that fertilizer elements, at least in part, help plants to serve as functional signals to attract the enemies of the harmful insects. These observations declare the benefits of the tri-trophic interactions as an ecological phenomenon in particular and the food chain in general. Additionally, this study may be useful to be used as a predictable model with the associated beneficial insects which may have key roles in overall aphid suppression or regulating its population. Impact of fertilizers on potato phenology characteristics and the cotton aphid population density seems to be variable based on types and ratios of the fertilizers. Interfacing the impact of natural enemies (plant-pest-natural enemies) through tri-trophic relationship within the food chain verified to be straightforward way of predicting on the impact of beneficial insects-guild on the cotton aphid population density.展开更多
Plasma membrane of plant cells is surrounded by cellulose wall and adjacent cells are joined together by a thick pectin rich matrix. Separation of plant cells and removal of the cell wall experimentally, by either a m...Plasma membrane of plant cells is surrounded by cellulose wall and adjacent cells are joined together by a thick pectin rich matrix. Separation of plant cells and removal of the cell wall experimentally, by either a mechanical or an enzymatic process, results in the production ofprotoplast. Protoplasts are useful tools to study the uptake and transport ofmacromolecules and production of somatic hybrids. Protoplasts can be obtained from all types of actively growing young and healthy tissues. The most convenient and widely used source of plant protoplasts is leaf. Juvenile seedling tissues, cotyledons are other alternative tissues most frequently used for protoplasts isolation. All the environmental and genotypic factors, which affect the cell wall thickenings and compactness indirectly, influence the number of protoplasts recovered. Protoplasts are isolated by two methods, mechanical and enzymatic. The enzyme mixture solution of celluiose/macerozyme is used to digest the cell wall. The critical factors affecting the obtaning ofprotoplasts are the kinds of cell wall degrading enzymes, the physiological state of plant leaves, the type of osmotic stabilizers and the composition of reaction solution. With the improvement of technique and enzyme combination rate, the yield of collected protoplasts will be increased higher.展开更多
基金Key R&D Program Major Project of Ningxia(2019BBF02016)New Technology Extension Project of Animal Husbandry in Autonomous Region Feed Workstation.
文摘[Objectives]This study was conducted to investigate the appropriate addition amounts of lactic acid bacteria and cellulase in the mixed silage of potato plants,so as to provide a basis for the rational use of potato plants.[Methods]Fresh potato(Solanum tuberosum)seedling plants,watermelon(Citrullus lanatus)plants,and melon(Cucumis melo)plants were selected as raw materials for silage,each of which was added at a ratio of 32%,and 4%of brown flour was added additionally.On this basis,an L 9(32)orthogonal experiment was designed to investigate the effects of the amount of lactic acid bacteria(10,20,30 g/kg)and the amount of cellulase(5,10,15 g/kg)on the experimental results with sensory evaluation score as an investigation index.[Results]With the increase of the amount of lactic acid bacteria and the amount of cellulase,the sensory evaluation score of silage increased,and it was the highest when the amount of lactic acid bacteria added was 20 g/kg and the amount of cellulose was 10 g/kg.With the increase of the amounts of lactic acid bacteria and cellulase added,ammonia nitrogen showed a decreasing trend,and the pH and ammonia nitrogen were the lowest when the amount of lactic acid bacteria added was 20 g/kg and the amount of cellulose was 10 g/kg.[Conclusions]This study provides a theoretical basis for the rational use of effective ingredients and nutrients in potato plants and the development of new feed resources.
文摘Tri-trophic interactions between fertilizer applications, cotton aphid (Aphis gossypii Golver) and associated beneficial insects were studied to investigate direct and indirect effects of fertilizers (types and ratios) on potato plants under field and greenhouse conditions, A. gossypii and associated beneficial insects. Fertilizers regimes showed direct impacts on the potato plant phenology and indirect effects on both A. gossypii population and the associated beneficial insects. Our data indicated that potato plants had been influenced by fertilizer elements used within tri-trophic system comprising potato plants, cotton aphid, and certain associated beneficial insects. This demonstrates that a bottom-up interaction is robust and has a particular value in the attraction of beneficial insects towards the potato plant signals due to used fertilizers which can also have a function when plants are attacked by A. gossypii. Yet, flexibility in the use of fertilizers (as chemical cues) is conserved, and that may help beneficial insects to specifically focus on the odor of plants that carry potential plant hosts and avoid plants that are only attacked by non-hosts. These results support the still controversial notion that fertilizer elements, at least in part, help plants to serve as functional signals to attract the enemies of the harmful insects. These observations declare the benefits of the tri-trophic interactions as an ecological phenomenon in particular and the food chain in general. Additionally, this study may be useful to be used as a predictable model with the associated beneficial insects which may have key roles in overall aphid suppression or regulating its population. Impact of fertilizers on potato phenology characteristics and the cotton aphid population density seems to be variable based on types and ratios of the fertilizers. Interfacing the impact of natural enemies (plant-pest-natural enemies) through tri-trophic relationship within the food chain verified to be straightforward way of predicting on the impact of beneficial insects-guild on the cotton aphid population density.
文摘Plasma membrane of plant cells is surrounded by cellulose wall and adjacent cells are joined together by a thick pectin rich matrix. Separation of plant cells and removal of the cell wall experimentally, by either a mechanical or an enzymatic process, results in the production ofprotoplast. Protoplasts are useful tools to study the uptake and transport ofmacromolecules and production of somatic hybrids. Protoplasts can be obtained from all types of actively growing young and healthy tissues. The most convenient and widely used source of plant protoplasts is leaf. Juvenile seedling tissues, cotyledons are other alternative tissues most frequently used for protoplasts isolation. All the environmental and genotypic factors, which affect the cell wall thickenings and compactness indirectly, influence the number of protoplasts recovered. Protoplasts are isolated by two methods, mechanical and enzymatic. The enzyme mixture solution of celluiose/macerozyme is used to digest the cell wall. The critical factors affecting the obtaning ofprotoplasts are the kinds of cell wall degrading enzymes, the physiological state of plant leaves, the type of osmotic stabilizers and the composition of reaction solution. With the improvement of technique and enzyme combination rate, the yield of collected protoplasts will be increased higher.