The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary depen...The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.展开更多
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e...In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.展开更多
In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/...In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including t...By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.展开更多
Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation al...Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation allows the Burgers-STO(BSTO)decomposition,two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition.Furthermore,we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions.Using the framework of standard Lie point symmetry theory,these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.展开更多
We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form ...We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.展开更多
In this article, by using the method of invariant sets of descending flow, we obtain the existence of sign-changing solutions of p-biharmonic equations with Hardy potential in RN.
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system...This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.展开更多
Some embedding inequalities in Hardy-Sobolev space are proved. Furthermore, by the improved inequalities and the linking theorem, in a new k-order SobolevHardy space, we obtain the existence of sign-changing solutions...Some embedding inequalities in Hardy-Sobolev space are proved. Furthermore, by the improved inequalities and the linking theorem, in a new k-order SobolevHardy space, we obtain the existence of sign-changing solutions for the nonlinear elliptic equation {-△(k)u:=-△u-(N-2)2/4u/|x|2-1/4k-1∑im1u/|x|2(ln(i)R/|x|2=f(x,u),x∈Ω,u=0,x∈Ω,where 0∈ΩBa(0)RN,n≥3,ln)i)=6jm1ln(j),and R=ae(k-1),where e(0)=1,e(j)=ee(j=1)for j≥1,ln(1)=ln,ln(j)=lnln(j-1)for j≥2.Besides,positive and negative solutions are obtained by a variant mountain pass theorem.展开更多
In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energ...In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.展开更多
In this paper, we deal with the following problem:By variational method, we prove the existenceof a nontrivial weak solution whenand the existence of a cylindricalweak solution when
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov...Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.展开更多
A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformatio...A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.展开更多
The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions a...The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.展开更多
We propose a new exactly solvable potential which is Formed by modified Kratzer potential plus a new ring-shaped potential η cot^2 θ/r^2 The solutions of the Dirac equation with equal scalar and vector ring-shaped m...We propose a new exactly solvable potential which is Formed by modified Kratzer potential plus a new ring-shaped potential η cot^2 θ/r^2 The solutions of the Dirac equation with equal scalar and vector ring-shaped modified Kratzer potential are found by using the Nikiforov-Uvarov method. The nonrelativistic limit of the energy spectrum has been discussed.展开更多
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into th...The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11305106,11275129 and 11405110the Natural Science Foundation of Zhejiang Province of China under Grant No.LQ13A050001
文摘The nonlocal symmetry for the potential Kadomtsev-Petviashvili(pKP)equation is derived by the truncated Painleve analysis.The nonlocal symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variable.Thanks to localization process,the finite symmetry transformations related with the nonlocal symmetry are obtained by solving the prolonged systems.The inelastic interactions among the multiple-front waves of the pKP equation are generated from the finite symmetry transformations.Based on the consistent tanh expansion method,a nonauto-B(a|¨)cklund transformation(BT)theorem of the pKP equation is constructed.We can get many new types of interaction solutions because of the existence of an arbitrary function in the nonauto-BT theorem.Some special interaction solutions are investigated both in analytical and graphical ways.
基金supported by the NSFC(12101012)the PhD Scientific Research Start-up Foundation of Anhui Normal University.Zeng’s research was supported by the NSFC(11961160716,11871054,12131017).
文摘In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)National Natural Science Foundation of China Youth Foud of China Youth Foud(Grant No.12101192).
文摘In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
基金supported by National Natural Science Foundation of China (Grant Nos.10735030 and 40775042)Ningbo Natural Science Foundation (Grant No. 2008A610017)+1 种基金National Basic Research Program of China (973 Program) (Grant Nos. 2005CB422301 and 2007CB814800)K.C. Wong Magna Fund in Ningbo University
文摘By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12235007, 11975131, and 12275144)the K. C. Wong Magna Fund in Ningbo Universitythe Natural Science Foundation of Zhejiang Province of China (Grant No. LQ20A010009)
文摘Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation allows the Burgers-STO(BSTO)decomposition,two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition.Furthermore,we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions.Using the framework of standard Lie point symmetry theory,these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.
文摘We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.
基金Supported by NSFC 11361077Young Academic and Technical Leaders Program(2015HB028)Yunnan Normal University,Lian Da Scholar Program
文摘In this article, by using the method of invariant sets of descending flow, we obtain the existence of sign-changing solutions of p-biharmonic equations with Hardy potential in RN.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021 and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No 20040007022).
文摘This paper is intended to apply a potential method of integration to solving the equations of holonomic and nonholonomic systems. For a holonomic system, the differential equations of motion can be written as a system of differential equations of first order and its fundamental partial differential equation is solved by using the potential method of integration. For a nonholonomic system, the equations of the corresponding holonomic system are solved by using the method and then the restriction of the nonholonomic constraints on the initial conditions of motion is added.
基金supported by the National Science Foundation of China (10471047)the Natural Science Foundation of Guangdong Province (04020077)
文摘Some embedding inequalities in Hardy-Sobolev space are proved. Furthermore, by the improved inequalities and the linking theorem, in a new k-order SobolevHardy space, we obtain the existence of sign-changing solutions for the nonlinear elliptic equation {-△(k)u:=-△u-(N-2)2/4u/|x|2-1/4k-1∑im1u/|x|2(ln(i)R/|x|2=f(x,u),x∈Ω,u=0,x∈Ω,where 0∈ΩBa(0)RN,n≥3,ln)i)=6jm1ln(j),and R=ae(k-1),where e(0)=1,e(j)=ee(j=1)for j≥1,ln(1)=ln,ln(j)=lnln(j-1)for j≥2.Besides,positive and negative solutions are obtained by a variant mountain pass theorem.
文摘In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.
基金Supported by the National Science Foundation of China(11071245 and 11101418)
文摘In this paper, we deal with the following problem:By variational method, we prove the existenceof a nontrivial weak solution whenand the existence of a cylindricalweak solution when
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
文摘Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.
文摘A shift sampling theory established by author (1997a) is a generalization of Fourier transform computation theory. Based on this theory, I develop an Algorithm-Error (A-E) equation of potential field transformations in the wavenumber domain, which not only gives a more flexible algorithm of potential field transformations, but also reveals the law of error of potential field transformations in the wavenumber domain. The DFT0η η(0.5, 0.5) reduction-to-pole (RTP) technique derived from the A-E equation significantly improves the resolution and accuracy of RTP anomalies at low magnetic latitudes, including the magnetic equator. The law (origin, form mechanism, and essential properties) of the edge oscillation revealed by the A-E equation points out theoretically a way of improving the effect of existing padding methods in high-pass transformations in the wavenumber domain.
基金The National Natural Science Foundation of China(No.10771032)
文摘The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.
文摘We propose a new exactly solvable potential which is Formed by modified Kratzer potential plus a new ring-shaped potential η cot^2 θ/r^2 The solutions of the Dirac equation with equal scalar and vector ring-shaped modified Kratzer potential are found by using the Nikiforov-Uvarov method. The nonrelativistic limit of the energy spectrum has been discussed.
基金supported by the Higher Education Project(Grant No.698/UN27.11/PN/2015)
文摘The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.