期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Ab Initio Study of the Mechanism of Cycloaddition Reaction between H_2Ge=Ge: and Acetaldehyde 被引量:2
1
作者 卢秀慧 李永庆 明静静 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第1期7-14,共8页
The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reac... The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. As the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde form a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to give an intermediate. Because the Ge atom in intermediate exhibits sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring germylene makes it isomerize to a twisted four-membered ring product. 展开更多
关键词 H2Ge=Ge: four-membered Ge-heterocyclic ring germylene spiro-Ge-heterocyclic compound potential energy profile
下载PDF
Ab Initio Study of the Mechanism of Forming a Spiro-Ge-heterocyclic Ring Compound Involving Si from Me_2Si=Ge: and Formaldehyde 被引量:2
2
作者 卢秀慧 王党生 +1 位作者 李涛 廉贞霞 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第4期481-487,共7页
X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: a... X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar...) is a new species. Its cycloaddition reaction is a new area for the study of germylene chemistry. The mechanism of cycloaddition reaction between singlet state Me2Si=Ge: and formaldehyde has been investigated with the CCSD(T)//MP2/cc-pvtz method. From the potential energy profile, it could be predicted that the reaction has one dominant reaction pathway. The reaction rule presented is that the two reactants first form a four-membered Si-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Si-heterocyclic ring germylene and the π orbital of formaldehyde form a π→p donor-acceptor bond, the four-membered Si-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge atom in the intermediate undergoes sp^3 hybridization after transition state, then the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound involving Si via a transition state. The research result indicates the laws of cycloaddition reaction between HzSi=Ge: and formaldehyde. It has important reference value for the cycloaddition reaction between X2Si=Ge: (X = H, Me, F, CI, Br, Ph, Ar…) and asymmetric to-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds involving Si. The study extends research area and enriches the research content of germylene chemistry. 展开更多
关键词 Me2Si=Ge: four-membered Si-heterocyclic ring germylene spiro-Ge-heterocyclicring compounds potential energy profile
下载PDF
Ab Initio Study of the Mechanism of Forming a Spiro-Si-heterocyclic Ring Compound Involving Ge from Cl_2Ge=Si:and Formaldehyde 被引量:2
3
作者 明静静 韩军锋 卢秀慧 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第9期1267-1274,共8页
The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddit... The X2Ge=Si: (X = H, Me, F, reaction is a new area for the study of silylene between singlet CI2Ge=Si: and formaldehyde CI, Br, Ph, At...) is a new species. Its cycloaddition chemistry. The mechanism of cycloaddition reaction has been investigated with CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring silylene through the [2+2] cycloaddition reaction. Owing to the 3p unoccupied orbital of Si: atom in the four-membered Ge-heterocyclic ring silylene and the π orbital of formaldehyde forming a π-p donor-acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with formaldehyde to form an intermediate. Because the Si: atom in intermediate shows sp3 hybridization after transition state, the intermediate isomerizes to a spiro-Si-heterocyclic ring compound involving Ge via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring silylene makes it isomerize to a twisted four-membered ring product. The research result indicates the laws of cycloaddition reaction between X2Ge=Si: (X = H, Me, F, C1, Br, Ph, Ar...) and the asymmetric g-bonded compounds, which are significant for the synthesis of small-ring and spiro-Si-heterocyclic ring compound involving Ge The study extends the research area and enriches the research content of silvlene chemistrv. 展开更多
关键词 CI2Ge=Si: four-membered Ge-heterocyclic ring silylene spiro-Si-heterocyclic ring compound potential energy profile
下载PDF
Theoretical Studies on N_2H+O Reaction
4
作者 LU Ying-wen LU Wen-cai SU Zhong-min 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第3期371-377,共7页
The N2H+O potential energy profile was studied at the CCSD(T)/6-311G++(df,p)//MP2/6-311G(d,p) level. Reactions associated with four intermediates(cis-HNNO, trans-HNNO, NNHO, and NNOH) were investigated. The... The N2H+O potential energy profile was studied at the CCSD(T)/6-311G++(df,p)//MP2/6-311G(d,p) level. Reactions associated with four intermediates(cis-HNNO, trans-HNNO, NNHO, and NNOH) were investigated. The results indicate that N2H+O reaction toward H+N2O is more favored than that toward N2+OH, consistent with previous experimental studies. The pathways for the two reactions are found to go through cis-HNNO, transition state, and finally to the products. The N2H+O→NH+NO reaction was studied in detail. Product NO in such a reaction is likely to occur via cis-HNNO, followed by trans-HNNO, and finally dissociates into NH+NO. These results suggest that N2H+O→NH+NO is an important channel in NO production. 展开更多
关键词 N2H+O NH+NO potential energy profile
下载PDF
Theoretical Study on the Mechanism of a New Synthesis Reaction of 1,3,5-Substituted-1,2,4-triazoles by Carboxylic Acids,Amidines,and Hydrazines
5
作者 王志玲 汪智娜 卢秀慧 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第3期367-374,共8页
The synthesis of 1,3,5-substituted-1,2,4-triazoles from α-imino-3-pyridine formic acid,acetamidine and anisole hydrazine as a model reaction in this paper and the synthesis mechanism of 1,3,5-substituted-1,2,4-triazo... The synthesis of 1,3,5-substituted-1,2,4-triazoles from α-imino-3-pyridine formic acid,acetamidine and anisole hydrazine as a model reaction in this paper and the synthesis mechanism of 1,3,5-substituted-1,2,4-triazole compounds from carboxylic acids,amidines and hydrazines have been first investigated with the B3 LYP/6-311++G** method.According to the potential energy profile,it can be predicted that the course of the reaction consists of five reactions containing six elementary reactions.The α-imino-3-pyridine formic acid and acetamidine form first an intermediate product through a dehydration reaction; the intermediate product further combines with hydrogen ion to form a positive ion; the positive ion reacts with anisole hydrazine by a dehydration reaction to form another positive ion; then,followed by two isomerization reactions,the final reaction with the acetate ion(Ac-) produces the final product.The research results reveal the laws of synthesis reaction of 1,3,5-substituted-1,2,4-triazoles by the carboxylic acids,amidines,hydrazines and their derivatives on theoretical level.It provides the systemic theoretical basis for the synthesis,development and application of 1,3,5-substituted-1,2,4-triazole compounds. 展开更多
关键词 1 3 5-substituted-1 2 4-triazole synthetic reaction potential energy profile molar gibbs free energy of reaction(△rGm)-
下载PDF
Features of Mechanism of Cycloaddition Reaction between Me2Ge=Sn:and Ethylene
6
作者 谭晓军 卢秀慧 谷劲松 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2020年第9期1627-1632,1555,共7页
X2Ge=Sn:(X=H,Me,F,Cl,Br,Ph,Ar…)are new species of chemistry.The cycloaddition reaction of X2Ge=Sn:is a new study field of stannylene chemistry.To explore the rules of cycloaddition reaction between X2Ge=Sn:and the sy... X2Ge=Sn:(X=H,Me,F,Cl,Br,Ph,Ar…)are new species of chemistry.The cycloaddition reaction of X2Ge=Sn:is a new study field of stannylene chemistry.To explore the rules of cycloaddition reaction between X2Ge=Sn:and the symmetric p-bonded compounds,the cycloaddition reactions of Me2Ge=Sn:and ethylene were selected as model reactions in this paper,and the mechanism was investigated for the first time here using the MP2 theory together with the 6-311++G**basis set for C,H and Ge atoms and the LanL2dzbasis set for Sn atoms.From the potential energy profile,it could be predicted that the reaction has one dominant reaction channel.The reaction rule present is that the 5p unoccupied orbital of Sn in Me2Ge=Sn:and theπorbital of ethylene form a p→p donor–acceptor bond,resulting in an intermediate which,due to its instability,makes itself isomerize into a four-membered Ge-heterocyclic ring stannylene.Because the 5p unoccupied orbital of Sn atom in the four-membered Ge-heterocyclic ring stannylene and theπorbital of ethylene form a p→p donor-acceptor bond,the four-membered Ge-heterocyclic ring stannylene further combines with ethylene to get another intermediate.Because the Sn atom in this intermediate exhibits sp3 hybridization after transition state,the intermediate isomerizes to a Ge-heterocyclic spiro-Sn-heterocyclic ring compound.The research result indicates the laws of cycloaddition reaction between X2Ge=Sn:and the symmetricπ-bonded compounds.This study opens up a new research field for stannylene chemistry. 展开更多
关键词 Me2Ge=Sn: cycloaddition reaction molar Gibbs free energy of reaction(△_rG_m) potential energy profile
原文传递
Theoretical Study of the Mechanism of Cycloaddition Reaction between Silylene Silylene (H2Si=Si:) and Acetone
7
作者 汪智娜 时乐义 +1 位作者 李永庆 卢秀慧 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第3期675-680,共6页
The mechanism of the cycloaddition reaction between singlet silylene silylene (H2Si = Si:) and acetone has been investigated with the CCSD (T)//MP2/6-31 G* method, According to the potential energy profile, it c... The mechanism of the cycloaddition reaction between singlet silylene silylene (H2Si = Si:) and acetone has been investigated with the CCSD (T)//MP2/6-31 G* method, According to the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2 + 2] cycloaddition reaction of the two ^-bonds in silylene silylene (H2Si=Si:) and acetone leads to the formation of a four-membered ring silylene (E3). Because of the unsaturated property of Si: atom in E3, it further reacts with ace- tone to form a silicic bis-heterocyclic compound (P7). Simultaneously, the ring strain of the four-membered ring silylene (E3) makes it isomerize to a twisted four-membered ring product (P4). 展开更多
关键词 silylene silylene (H2Si = Si:) cycloaddition reaction potential energy profile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部