The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century clima...The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them.展开更多
The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimenta...The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.展开更多
The modulation of tropical cyclogenesis over the southern South China Sea (SSCS) by the El Nin o- Southern Oscillation (ENSO) is examined in October–December (OND), when tropical cyclone (TC) activities are m...The modulation of tropical cyclogenesis over the southern South China Sea (SSCS) by the El Nin o- Southern Oscillation (ENSO) is examined in October–December (OND), when tropical cyclone (TC) activities are most active in this region. The results reveal that there were more TCs formed over the SSCS during La Nin a years and less TCs during El Nin o years. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for El Nin o and La Nin a years separately, which could account for the changes of TC frequency over the SSCS in different ENSO phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results show that the mid-level relative humidity makes the largest contribution to the ENSO modulation of tropical cyclogenesis over the SSCS. Although warmer sea surface temperatures (SSTs) and larger amount of evaporation from the ocean surface were observed over the SSCS during El Nin o years, anomalous descending motions due to the anomalous Walker circulations inhibited the upward transports of water vapor and led to less moisture contents in the middle troposphere, which suppressed TC formations.展开更多
Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to...Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis- 1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multi- model ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.展开更多
This study investigates the global performance of the tropical cyclone(TC)genesis potential index based on oceanic parameters(GPI_(ocean))proposed by Zhang et al.(2016).In six major TC formation basins,GPI_(ocean)can ...This study investigates the global performance of the tropical cyclone(TC)genesis potential index based on oceanic parameters(GPI_(ocean))proposed by Zhang et al.(2016).In six major TC formation basins,GPI_(ocean)can represent the seasonal variations of TC genesis over most basins,except for the North Indian Ocean(NIO).The monthly climatological GPI_(ocean)shows only a single peak in the NIO,which cannot describe the bimodal pattern of the annual cycle of TC genesis.To determine the cause of the poor performance of GPI_(ocean)in the NIO,the relative contributions of different parameters related to GPI_(ocean)are calculated and compared with those related to the genesis potential index developed by Emanuel and Nolan(2004)(GPI04).Results show that the net longwave radiation on the sea surface is responsible for the single peak of TC genesis in the NIO in boreal summer.Compared with GPI04,vertical wind shear is not involved in GPI_(ocean).Vertical wind shear is the dominant factor inhibiting TC genesis in the NIO in boreal summer.Therefore,the absence of vertical wind shear in GPI_(ocean)results in the failure of the annual cycle of TC genesis in the NIO.展开更多
To understand the impacts of large-scale circulation during the evolution of E1 Nifio cycle on tropical cyclones (TC) is important and useful for TC forecast. Based on best-track data from the Joint Typhoon Warning ...To understand the impacts of large-scale circulation during the evolution of E1 Nifio cycle on tropical cyclones (TC) is important and useful for TC forecast. Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975- 2014, we investigated the influences of two types of E1 Nifio, the eastern Pacific E1 Nifio (EP-E1 Nifio) and central Pacific E1 Nifio (CP-E1 Nifio), on global TC genesis. We also examined how various environmental factors contribute to these influences using a modified genesis potential index (MGPI). The composites reproduced for two types of E1 Nifio, from their developing to decaying phases, were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea. Certain factors of MGPI with more influence than others in various regions are identified. Over the western North Pacific, five variables were all important in the two E1Nifio types during developing summer (July-August-September) and fall (October- November-December), and decaying spring (April-May-June) and summer. In the eastern Pacific, vertical shear and relative vorticity are the crucial factors for the two types of El Nifio during developing and decaying summers. In the Atlantic, vertical shear, potential intensity and relative humidity are important for the opposite variation of EP- and CP-EI Nifios during decaying summers. In the Southern Hemisphere, the five variables have varying contributions to TC genesis variation during peak season (January-February-March) for the two types of E1 Nifio. In the Bay of Bengal, relative vorticity, humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-E1 Nifio decaying spring. In the Arabian Sea, the EP-E1 Nifio generates a slightly positive anomaly of TC genesis during developing falls and decaying springs, but the MGPI failed to capture this variation.展开更多
To observe the effect of electro-acupuncture (EA) on auto regressive with exogenous input model (ARX-model) auditory evoked index (AAI) in patients anesthetized with different anesthetics. Methods: Forty-eight ...To observe the effect of electro-acupuncture (EA) on auto regressive with exogenous input model (ARX-model) auditory evoked index (AAI) in patients anesthetized with different anesthetics. Methods: Forty-eight adult patients undergoing scheduled surgical operation were enrolled and divided into two groups (24 in each group) according to the anesthetics applied, Group A was anesthetized with propofol sedation and Group B with Isoflurane-epidural anesthesia. Group A was subdivided into three groups of low, middle and high concentration of target effect-site of 1.0 μg/ml, 1.5 μg/ml and 2.0 μg/ml through target controlled infusion (TCI) and Group B into 3 subgroups of minimum alveolar effective concentration of isoflurane (0.4 MAC, 0.6 MAC and 0.8 MAC for B1, B2 and B3 subgroups) respectively, with 8 patients in every subgroup. EA on acupoints of Hegu (LI4) and Neiguan (P6) was applied on all the patients during anesthesia, and the change of AAI at various time points was recorded. Results: In the three subgroups of Group A, levels of AAI were significantly elevated in the first few minutes after EA, and significantly lowered 20 min after EA in subgroup A2. While in the subgroups of Group B, except the elevating in Group B11 - 2 rain after EA, levels of AAI remained unchanged at other time points. Conclusion: Pain response could be reflected by AAI during EA. EA could enhance the sedative effect of propofol in middle concentration, but its effect on isoflurane epidural anesthesia is insignificant.展开更多
Modified potential ecological risk index (MRI) was proposed based on the potential ecological risk index (RI) and risk assessment code (RAC) by modifying an index. The modified index was relevant to the chemical...Modified potential ecological risk index (MRI) was proposed based on the potential ecological risk index (RI) and risk assessment code (RAC) by modifying an index. The modified index was relevant to the chemical speciation of heavy metals. Xiawan Port, a typical region contaminated by industrial production, was selected as a case study area. The total concentrations and chemical speciation of heavy metals in sediments of Xiawan Port were analyzed. The experimental data indicate that Xiawan Port is seriously polluted by heavy metals, especially by Cd. The risks of heavy metals are evaluated by RI, RAC and MRI, respectively. The resluts of MRI show that the risks of heavy metals are in the decreasing order of Cd〉Pb〉Cu〉Zn. Comparison of results by different methods reveals that MRI integrates the characters of RI and RAC. MRI is recognized to be useful for risk managemnt of heavy metals in sediments.展开更多
We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrodinger equation with different dynamic linear potentials. For the limited case α = 1(α is the Lé...We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrodinger equation with different dynamic linear potentials. For the limited case α = 1(α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum,the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.展开更多
The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of ...The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of coals have different spontaneous combustion characteristics. For coal loss prevention, a measure is necessary for prediction of coal spontaneous combustion. In this study, a new engineering classification system called "Coal Spontaneous Combustion Potential Index (CSCPI)" is presented based on the Fuzzy Delphi Analytic Hierarchy Process (FDAHP) approach. CSCPI classifies coals based on their spontaneous combustion capability. After recognition of the roles of the effective parameters influencing the initiation of a spontaneous combustion, a series of intrinsic, geological, and mining characteristics of coal seams are investigated. Then, the main stages of the implementation of the FDAHP method are studied and the weight of each parameter involved is calculated. A classification list of each parameter is formed, the CSCPI system is described, and the engineering classifying system is subsequently presented. In the CSCPI system, each coal seam can be rated by a number from 0 to 100; a higher number implies a greater ease for the coal spontaneous combustion capability. Based on the CSCPI system, the propensity of spontaneous combustion of coal can be classified into three potential levels: low, medium, and high. Finally, using the events of coal spontaneous combustion occurring in one of the Iranian coal mines, Eastern Alborz Coal Mines, an initial validation of the mentioned systematic approach is conducted. Comparison of the results obtained in this study illustrate a relatively good agreement.展开更多
Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the pres...Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.展开更多
Groundwater is the most prioritized water source in India and plays an indispensable role in India’s economy. The groundwater potential mapping is key to the sustainable groundwater development and management. A hybr...Groundwater is the most prioritized water source in India and plays an indispensable role in India’s economy. The groundwater potential mapping is key to the sustainable groundwater development and management. A hybrid methodology is applied to delineate potential groundwater zones based on remote sensing, geographical information systems(GIS) and analytic hierarchy process(AHP) as on multicriteria decision making. For the purpose of demonstrating field application, Chittar watershed, Tamilnadu, India is studied as an example. The important morphological characteristics considered in the study are lithology, geomorphology, lineament density, drainage density, slope, and Soil Conservation Service–Curve Number(SCS-CN). These six thematic layers are generated in a GIS platform. Based on intersecting the layers, AHP method, the values for adopting the pairwise comparison normalized weight and normalized subclasses weightage were given. The normalized subclass weightage is input into each layer subclass. Then, weighted linear combination method is used to add the data layers in GIS platform to generate groundwater potential Index(GWPI) map. The GWPI map is validated based on the net recharge computed from the differences of measured groundwater levels between the pre-monsoon and post-monsoon in the year 2018. The kappa statistics are used to measure level spatial consistency between the GWPI and net recharge map. The overall average spatial matching accuracy between the two data sets is 0.86, while the kappa coefficient for GWPI with net recharge, 0.78. The results show that in Chittar watershed about 870 km^2 area is divided into high potential zone(i.e. sum of very high and high potential zone), 667 km^2 area, as the moderate one and the rest 105 km^2 area, as the poor zone(i.e. sum of very poor and poor potential zone).展开更多
To identify the potential groundwater bearing zones for future groundwater resources development of the study area, an investigation has been made using lithology, groundwater monitoring and elevation data. The strati...To identify the potential groundwater bearing zones for future groundwater resources development of the study area, an investigation has been made using lithology, groundwater monitoring and elevation data. The stratigraphic cross-sections of the area reveal six distinct hydrostratigraphic features viz. clay-silt-sand, fine sand, fine to medium sand, medium sand, medium to coarse sand and coarse sand. On the basis of lithological information, the groundwater bearing zone of the area has been divided into two main hydrostratigraphic units viz. aquitard and aquifer, which consist of clay-silt-sand and sands of different grain sizes respectively. The aquifer zone is further divided into two categories: “small scale aquifer” made dominantly of fine and “main aquifer” comprising of fine-medium to coarse sand. The annual fluctuation of water table in the study area is observed from 4.9 m to 5.6 m. The area is demarcated as three different groundwater bearing zones based on Catastrophe theory using GIS.展开更多
The objective of this study was to develop a method to assess and analyze the total allelopathic potential of crop germplasm and to test this method on four winter wheat accessions commonly planted in the Loess Platea...The objective of this study was to develop a method to assess and analyze the total allelopathic potential of crop germplasm and to test this method on four winter wheat accessions commonly planted in the Loess Plateau. A systems engineering model was developed and used to evaluate the total allelopathic potential of crop cultivars. In addition, a method for quantifying the total allelopathic potential in crop accessions was presented. Total allelopathic potential of four winter wheat accessions from the Loess Plateau was estimated and compared using a systems theory approach. The model assessed allelopathic potential in different parts of the plants from the time wheat turned green in spring until maturity. Results from these models indicated that the four wheat accessions had very weak allelopathic potential. Allelopathic potential declined in the order Xiaoyan 22 〉 Ningdong 1 〉 Fengchan 3 〉 Bima 1. This system engineering evaluation method allows for the assessment of allelopathic potential among crop varieties. It will help plant breeders to select and develop allelopathic crop accessions that combine weed suppression properties with agronomic traits related to yield and quality.展开更多
Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismical...Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.展开更多
Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental acti...Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.展开更多
The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode over the westem North Pacific (WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis (TCG) by ...The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode over the westem North Pacific (WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis (TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found. More TCG events occur during the QBWO's convectively active phase. Based on the genesis potential index (GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO's active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO's inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms. Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity. The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns--the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains (SSWs) over the WNP, with larger amplitude SSWs during the QBWO's active phase. This implies a possible enhanced (weakened) relationship between TCG and SSWs during the active (inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.展开更多
This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical c...This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.展开更多
This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to ...This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.展开更多
Threatening millions of people and causing billions of dollars in losses,tropical cyclones(TCs)are among the most severe natural hazards in the world,especially over the western North Pacific.However,the response of T...Threatening millions of people and causing billions of dollars in losses,tropical cyclones(TCs)are among the most severe natural hazards in the world,especially over the western North Pacific.However,the response of TCs to a warming or changing climate has been the subject of considerable research,often with conflicting results.In this study,the abilities of Coupled Model Intercomparison Project(CMIP)Phase 6(CMIP6)models to simulate TC genesis are assessed through historical simulations.The results indicate that a systematic humidity bias persists in most CMIP6 models from corresponding CMIP Phase 5 models,which leads to an overestimation of climatological TC genesis.However,the annual cycle of TC genesis is well captured by CMIP6 models.The abilities of 25 models to simulate the geographical patterns of TC genesis vary significantly.In addition,seven models are identified as well simulated models,but seven models are identified as poorly simulated ones.A comparison of the environmental variables for TC genesis in the well-simulated group and the poorly simulated group identifies moisture in the mid-troposphere as a key factor in the realistic simulation of El Niño-Southern Oscillation(ENSO)impacts on TC genesis.In contrast with the observations,the poorly simulated group does not reproduce the suppressing effect of negative moisture anomalies on TC genesis in the northwestern region(20°–30°N,120°–145°E)during El Niño years.Given the interaction between TC and ENSO,these results provide a guidance for future TC projections under climate change by CMIP6 models.展开更多
基金supported by the Chinese Academy of Sciences under (Grant Nos.KZCX2-YW-Q1-02 and KZCX2-YW-Q11-05)the Major State Basic Research Development Program of China (973 Pro-gram) (Grant No.2009CB421407)the National Natural Science Foundation of China (Grant Nos. 40631005,40775049, and 40805029)
文摘The Tropical Cyclone Genesis Potential Index (GPI) was employed to investigate possible impacts of global warming on tropical cyclone genesis over the western North Pacific (WNP). The outputs of 20th century climate simulation by eighteen GCMs were used to evaluate the models' ability to reproduce tropical cyclone genesis via the GPI. The GCMs were found in general to reasonably reproduce the observed spatial distribution of genesis. Some of the models also showed ability in capturing observed temporal variation. Based on the evaluation, the models (CGCM3.1-T47 and IPSL-CM4) found to perform best when reproducing both spatial and temporal features were chosen to project future GPI. Results show that both of these models project an upward trend of the GPI under the SRES A2 scenario, however the rate of increase differs between them.
基金This work was supported by the National Natural Science Foundation of China (No.21072053 and No.20772028) and the Scientific Research Fund of Hunan Provincial Education Department (No.10K025 and No.09C386).
文摘The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.
基金The National Basic Research Program of China under contract No. 2011CB403500the fund from the State Key Laboratory of Satellite Ocean Environmental Dynamics (Second Institute of Oceanography) under contract No. SOED1108+1 种基金the fund from the State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology) under contract No. LED1002the tropical marine meteorology fund from the Institute of Tropical and Marine Meteorology and the Fundamental Research Funds for the Central Universities under contract No. 111gpy13
文摘The modulation of tropical cyclogenesis over the southern South China Sea (SSCS) by the El Nin o- Southern Oscillation (ENSO) is examined in October–December (OND), when tropical cyclone (TC) activities are most active in this region. The results reveal that there were more TCs formed over the SSCS during La Nin a years and less TCs during El Nin o years. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for El Nin o and La Nin a years separately, which could account for the changes of TC frequency over the SSCS in different ENSO phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results show that the mid-level relative humidity makes the largest contribution to the ENSO modulation of tropical cyclogenesis over the SSCS. Although warmer sea surface temperatures (SSTs) and larger amount of evaporation from the ocean surface were observed over the SSCS during El Nin o years, anomalous descending motions due to the anomalous Walker circulations inhibited the upward transports of water vapor and led to less moisture contents in the middle troposphere, which suppressed TC formations.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2013CB430304)the Scientific Research Foundation of the First Institute of Oceanography+3 种基金the State Oceanic Administration(Grant No.GY0213G19)the National Natural Science Foundation of China(Grant Nos.41205026 and41206026)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010104)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.SQ201208)
文摘Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis- 1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multi- model ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.
基金the Strategic Priority Re-search Program of the Chinese Academy of Sciences(No.XDA20060502)the National Key Research and Devel-opment Program of China(No.2019YFA0606701)+2 种基金the National Natural Science Foundation of China(Nos.41925024 and 41731173)the Pioneer Hundred Talents Program of the Chinese Academy of Sciences,the Leading Talents of Guangdong Province Program,Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2018PY06)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Lab-oratory(Guangzhou)(No.GML2019ZD0306).
文摘This study investigates the global performance of the tropical cyclone(TC)genesis potential index based on oceanic parameters(GPI_(ocean))proposed by Zhang et al.(2016).In six major TC formation basins,GPI_(ocean)can represent the seasonal variations of TC genesis over most basins,except for the North Indian Ocean(NIO).The monthly climatological GPI_(ocean)shows only a single peak in the NIO,which cannot describe the bimodal pattern of the annual cycle of TC genesis.To determine the cause of the poor performance of GPI_(ocean)in the NIO,the relative contributions of different parameters related to GPI_(ocean)are calculated and compared with those related to the genesis potential index developed by Emanuel and Nolan(2004)(GPI04).Results show that the net longwave radiation on the sea surface is responsible for the single peak of TC genesis in the NIO in boreal summer.Compared with GPI04,vertical wind shear is not involved in GPI_(ocean).Vertical wind shear is the dominant factor inhibiting TC genesis in the NIO in boreal summer.Therefore,the absence of vertical wind shear in GPI_(ocean)results in the failure of the annual cycle of TC genesis in the NIO.
基金Supported by the National Basic Research Program of China(973Program)(No.2012CB417402)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1510)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11010102)the National Natural Science Foundation of China(No.41106018)the Funds for Creative Research Groups of China(No.41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘To understand the impacts of large-scale circulation during the evolution of E1 Nifio cycle on tropical cyclones (TC) is important and useful for TC forecast. Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975- 2014, we investigated the influences of two types of E1 Nifio, the eastern Pacific E1 Nifio (EP-E1 Nifio) and central Pacific E1 Nifio (CP-E1 Nifio), on global TC genesis. We also examined how various environmental factors contribute to these influences using a modified genesis potential index (MGPI). The composites reproduced for two types of E1 Nifio, from their developing to decaying phases, were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea. Certain factors of MGPI with more influence than others in various regions are identified. Over the western North Pacific, five variables were all important in the two E1Nifio types during developing summer (July-August-September) and fall (October- November-December), and decaying spring (April-May-June) and summer. In the eastern Pacific, vertical shear and relative vorticity are the crucial factors for the two types of El Nifio during developing and decaying summers. In the Atlantic, vertical shear, potential intensity and relative humidity are important for the opposite variation of EP- and CP-EI Nifios during decaying summers. In the Southern Hemisphere, the five variables have varying contributions to TC genesis variation during peak season (January-February-March) for the two types of E1 Nifio. In the Bay of Bengal, relative vorticity, humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-E1 Nifio decaying spring. In the Arabian Sea, the EP-E1 Nifio generates a slightly positive anomaly of TC genesis during developing falls and decaying springs, but the MGPI failed to capture this variation.
文摘To observe the effect of electro-acupuncture (EA) on auto regressive with exogenous input model (ARX-model) auditory evoked index (AAI) in patients anesthetized with different anesthetics. Methods: Forty-eight adult patients undergoing scheduled surgical operation were enrolled and divided into two groups (24 in each group) according to the anesthetics applied, Group A was anesthetized with propofol sedation and Group B with Isoflurane-epidural anesthesia. Group A was subdivided into three groups of low, middle and high concentration of target effect-site of 1.0 μg/ml, 1.5 μg/ml and 2.0 μg/ml through target controlled infusion (TCI) and Group B into 3 subgroups of minimum alveolar effective concentration of isoflurane (0.4 MAC, 0.6 MAC and 0.8 MAC for B1, B2 and B3 subgroups) respectively, with 8 patients in every subgroup. EA on acupoints of Hegu (LI4) and Neiguan (P6) was applied on all the patients during anesthesia, and the change of AAI at various time points was recorded. Results: In the three subgroups of Group A, levels of AAI were significantly elevated in the first few minutes after EA, and significantly lowered 20 min after EA in subgroup A2. While in the subgroups of Group B, except the elevating in Group B11 - 2 rain after EA, levels of AAI remained unchanged at other time points. Conclusion: Pain response could be reflected by AAI during EA. EA could enhance the sedative effect of propofol in middle concentration, but its effect on isoflurane epidural anesthesia is insignificant.
基金Projects (51039001, 50978087, 51009063, 50808071) supported by the National Natural Science Foundation of ChinaProject (SX2010-026) supported by State Council Three Gorges Project Construction Committee Executive Office,China+2 种基金Project (2009ZX07212-001) supported by Ministry of Environmental Protection of ChinaProject (BYHGLC-2010-02) supported by Guangzhou Water Authority,ChinaProject (CX2010B157) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Modified potential ecological risk index (MRI) was proposed based on the potential ecological risk index (RI) and risk assessment code (RAC) by modifying an index. The modified index was relevant to the chemical speciation of heavy metals. Xiawan Port, a typical region contaminated by industrial production, was selected as a case study area. The total concentrations and chemical speciation of heavy metals in sediments of Xiawan Port were analyzed. The experimental data indicate that Xiawan Port is seriously polluted by heavy metals, especially by Cd. The risks of heavy metals are evaluated by RI, RAC and MRI, respectively. The resluts of MRI show that the risks of heavy metals are in the decreasing order of Cd〉Pb〉Cu〉Zn. Comparison of results by different methods reveals that MRI integrates the characters of RI and RAC. MRI is recognized to be useful for risk managemnt of heavy metals in sediments.
基金Project supported by the Natural Science Research Project of Anhui Provincal Education Department of China(Grant Nos.KJHS2018B01 and KJ2018A0407)the National Natural Science Foundation of China(Grant No.11804112)+1 种基金the Natural Science Foundation of Anhui Province of China(Grant No.1808085QA22)Start-up Fund of Huangshan University,China(Grant No.2015xkjq001).
文摘We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrodinger equation with different dynamic linear potentials. For the limited case α = 1(α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum,the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.
文摘The phenomenon of coal spontaneous combustion is one of the common hazards in coal mines and also one of the important reasons for the loss of coal in piles and mines. Based on previous researches, different types of coals have different spontaneous combustion characteristics. For coal loss prevention, a measure is necessary for prediction of coal spontaneous combustion. In this study, a new engineering classification system called "Coal Spontaneous Combustion Potential Index (CSCPI)" is presented based on the Fuzzy Delphi Analytic Hierarchy Process (FDAHP) approach. CSCPI classifies coals based on their spontaneous combustion capability. After recognition of the roles of the effective parameters influencing the initiation of a spontaneous combustion, a series of intrinsic, geological, and mining characteristics of coal seams are investigated. Then, the main stages of the implementation of the FDAHP method are studied and the weight of each parameter involved is calculated. A classification list of each parameter is formed, the CSCPI system is described, and the engineering classifying system is subsequently presented. In the CSCPI system, each coal seam can be rated by a number from 0 to 100; a higher number implies a greater ease for the coal spontaneous combustion capability. Based on the CSCPI system, the propensity of spontaneous combustion of coal can be classified into three potential levels: low, medium, and high. Finally, using the events of coal spontaneous combustion occurring in one of the Iranian coal mines, Eastern Alborz Coal Mines, an initial validation of the mentioned systematic approach is conducted. Comparison of the results obtained in this study illustrate a relatively good agreement.
文摘Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.
文摘Groundwater is the most prioritized water source in India and plays an indispensable role in India’s economy. The groundwater potential mapping is key to the sustainable groundwater development and management. A hybrid methodology is applied to delineate potential groundwater zones based on remote sensing, geographical information systems(GIS) and analytic hierarchy process(AHP) as on multicriteria decision making. For the purpose of demonstrating field application, Chittar watershed, Tamilnadu, India is studied as an example. The important morphological characteristics considered in the study are lithology, geomorphology, lineament density, drainage density, slope, and Soil Conservation Service–Curve Number(SCS-CN). These six thematic layers are generated in a GIS platform. Based on intersecting the layers, AHP method, the values for adopting the pairwise comparison normalized weight and normalized subclasses weightage were given. The normalized subclass weightage is input into each layer subclass. Then, weighted linear combination method is used to add the data layers in GIS platform to generate groundwater potential Index(GWPI) map. The GWPI map is validated based on the net recharge computed from the differences of measured groundwater levels between the pre-monsoon and post-monsoon in the year 2018. The kappa statistics are used to measure level spatial consistency between the GWPI and net recharge map. The overall average spatial matching accuracy between the two data sets is 0.86, while the kappa coefficient for GWPI with net recharge, 0.78. The results show that in Chittar watershed about 870 km^2 area is divided into high potential zone(i.e. sum of very high and high potential zone), 667 km^2 area, as the moderate one and the rest 105 km^2 area, as the poor zone(i.e. sum of very poor and poor potential zone).
文摘To identify the potential groundwater bearing zones for future groundwater resources development of the study area, an investigation has been made using lithology, groundwater monitoring and elevation data. The stratigraphic cross-sections of the area reveal six distinct hydrostratigraphic features viz. clay-silt-sand, fine sand, fine to medium sand, medium sand, medium to coarse sand and coarse sand. On the basis of lithological information, the groundwater bearing zone of the area has been divided into two main hydrostratigraphic units viz. aquitard and aquifer, which consist of clay-silt-sand and sands of different grain sizes respectively. The aquifer zone is further divided into two categories: “small scale aquifer” made dominantly of fine and “main aquifer” comprising of fine-medium to coarse sand. The annual fluctuation of water table in the study area is observed from 4.9 m to 5.6 m. The area is demarcated as three different groundwater bearing zones based on Catastrophe theory using GIS.
文摘The objective of this study was to develop a method to assess and analyze the total allelopathic potential of crop germplasm and to test this method on four winter wheat accessions commonly planted in the Loess Plateau. A systems engineering model was developed and used to evaluate the total allelopathic potential of crop cultivars. In addition, a method for quantifying the total allelopathic potential in crop accessions was presented. Total allelopathic potential of four winter wheat accessions from the Loess Plateau was estimated and compared using a systems theory approach. The model assessed allelopathic potential in different parts of the plants from the time wheat turned green in spring until maturity. Results from these models indicated that the four wheat accessions had very weak allelopathic potential. Allelopathic potential declined in the order Xiaoyan 22 〉 Ningdong 1 〉 Fengchan 3 〉 Bima 1. This system engineering evaluation method allows for the assessment of allelopathic potential among crop varieties. It will help plant breeders to select and develop allelopathic crop accessions that combine weed suppression properties with agronomic traits related to yield and quality.
文摘Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.
基金Project(50925417) supported by the National Natural Science Funds for Distinguished Young Scholar of ChinaProject(2010AA065203) supported by the High Technology Research and Development Program of China+2 种基金Project(2010-609) Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(ncet-10-0840) supported by Program for New Century Excellent Talents in UniversityProject(2012FJ1080) supported by Key Projects of Science and Technology of Hunan Province,China
文摘Four different methods,namely mineralogical analysis,three-stage BCR sequential extraction procedure,dynamic leaching test and Hakanson Potential Ecological Risk Index Method were used to access the environmental activity and potential ecological risks of heavy metals in zinc leaching residue.The results demonstrate that the environmental activity of heavy metals declines in the following order:CdZnCuAsPb.Potential ecological risk indices for single heavy metal are CdZnCuAsPb.Cd has serious potential ecological risk to the ecological environment and contributes most to the potential toxicity response indices for various heavy metals in the residue.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41675072,41305050,41275093,41475091 and 41305039)the National Basic Research Program of China(Grant Nos.2013CB430301,2013CB430103 and 2015CB452803)+5 种基金the Jiangsu Provincial Natural Science Fund Project(Grant No.BK20150910)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.14KJA170005)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Project of Global Change and Air–Sea Interaction(Grant No.GASI-03-IPOVAI-04)the base funding of the Atlantic Oceanographic and Meteorological Laboratory(AOML)Earth System Modelling Center Contribution Number 117
文摘The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode over the westem North Pacific (WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis (TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found. More TCG events occur during the QBWO's convectively active phase. Based on the genesis potential index (GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO's active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO's inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms. Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity. The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns--the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains (SSWs) over the WNP, with larger amplitude SSWs during the QBWO's active phase. This implies a possible enhanced (weakened) relationship between TCG and SSWs during the active (inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences with Grant No.XDA11010000the National Natural Science Foundation of China (No.41205026)+6 种基金the National Basic Research Program of China (2011CB403500)the Innovation Group Program of State Key Laboratory of Tropical Oceanography (LTOZZ1201)Dr.Lei Wang was also sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of Chinathe specialized research fund for the doctoral program of Higher Education for Youthsthe foundation of Guangdong Educational Committee for Youths (2012 LYM_0008)the open fund of the Key Laboratory of Ocean Circulation and Waves of Chinese Academy of Sciences (KLOCAW1309)
文摘This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.
基金Project(5141001028)supported by International Cooperation and Exchanges of NSFC,ChinaProjects(51308566,51308565,51409025)supported by the National Natural Science Foundation of ChinaProject(CDJZR12200002)supported by the Fundamental Research Funds for the Central Universities,China
文摘This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.
基金The National Natural Science Foundation of China under contract Nos 42076001,41690121,and 41690120the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311020004the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2020PT205.
文摘Threatening millions of people and causing billions of dollars in losses,tropical cyclones(TCs)are among the most severe natural hazards in the world,especially over the western North Pacific.However,the response of TCs to a warming or changing climate has been the subject of considerable research,often with conflicting results.In this study,the abilities of Coupled Model Intercomparison Project(CMIP)Phase 6(CMIP6)models to simulate TC genesis are assessed through historical simulations.The results indicate that a systematic humidity bias persists in most CMIP6 models from corresponding CMIP Phase 5 models,which leads to an overestimation of climatological TC genesis.However,the annual cycle of TC genesis is well captured by CMIP6 models.The abilities of 25 models to simulate the geographical patterns of TC genesis vary significantly.In addition,seven models are identified as well simulated models,but seven models are identified as poorly simulated ones.A comparison of the environmental variables for TC genesis in the well-simulated group and the poorly simulated group identifies moisture in the mid-troposphere as a key factor in the realistic simulation of El Niño-Southern Oscillation(ENSO)impacts on TC genesis.In contrast with the observations,the poorly simulated group does not reproduce the suppressing effect of negative moisture anomalies on TC genesis in the northwestern region(20°–30°N,120°–145°E)during El Niño years.Given the interaction between TC and ENSO,these results provide a guidance for future TC projections under climate change by CMIP6 models.