Potentilla anserina L.and Elymus nutans Griseb.are dominant species in the subalpine meadows of China.Grazing is one of the most important factors that influence community structure and productivity of subalpine meado...Potentilla anserina L.and Elymus nutans Griseb.are dominant species in the subalpine meadows of China.Grazing is one of the most important factors that influence community structure and productivity of subalpine meadows.Understanding how grazing changes photosynthetic capability is essential for preservation and restoration of grasslands.However,information about the effects of grazing on photosynthetic capability remains inadequate.Experiments were conducted in fencing and grazing areas in the Qilian Mountains,Northwest China.The leaf gas exchange and photosynthetic curves of P.anserina and E.nutans were measured at different growth stages.Results showed that grazing decreased the values of leaf gas exchange parameters,such as net photosynthetic rate,stomatal conductance,transpiration rate,and intercellular CO2 concentration of P.anserina and E.nutans.In addition,grazing decreased the values of net photosynthetic rate-photosynthetically active radiation(PN-PAR)curve parameters,such as light-saturated net photosynthetic rate,apparent quantum efficiency,light compensation point,light saturation point,and dark respiration rate.Our results demonstrated that grazing was the primary limiting factor for photosynthesis of dominant grassland species in the study area.展开更多
The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plo...The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.展开更多
Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumu...Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.展开更多
Objective To investigate the protective effect of n-butanol extract from the roots of Potentilla anserina (NP) on hypoxic hippocampal neurons in neonatal rats. Methods Primary cultured hippocampal neurons were pretrea...Objective To investigate the protective effect of n-butanol extract from the roots of Potentilla anserina (NP) on hypoxic hippocampal neurons in neonatal rats. Methods Primary cultured hippocampal neurons were pretreated with different concentration of NP (0.25, 0.0625, and 0.0156 mg/mL) before incubation in a low oxygen (0.1%) environment for 4 h. Cell viability was evaluated by Trypan blue staining assay. Lactate dehydrogenase (LDH) released by neurons into the medium was measured. The activity of superoxide dismutase (SOD) in cell cytosol was determined using nitroblue tetrazolium. Morphological changes and mitochondrial function were observed by transmission electron microscopy. Results Hypoxic injury could decrease the cells viability of neuron, enhance LDH release (P < 0.05), decrease SOD activity, and increase mitochondrial injury. Pretreatment with NP significantly increased cell viability, decreased LDH release (P < 0.05), promoted SOD activity (P < 0.05), and remarkably improved cellular ultra-microstructure compared with the model group. Conclusion NP could protect the primary hippocampal neurons from hypoxic injury by attenuating mitochondrial cell death.展开更多
Objective To investigate the effect of n-butanol extract from Potentilla anserina(NP)intervention on hypoxia-induced Ca 2+ overload and SERCA2 expression of rat cardiomyocytes.Methods Primary cultured myocardial cell ...Objective To investigate the effect of n-butanol extract from Potentilla anserina(NP)intervention on hypoxia-induced Ca 2+ overload and SERCA2 expression of rat cardiomyocytes.Methods Primary cultured myocardial cell from SD neonatal rat(1-3 d)was used in the establishment of hypoxia model.After hypoxia for 3 h,the Ca 2+ concentration of myocardial cells was measured with fura-2/AM fluorescent probe,and the biochemical indicator intracellular Ca 2+ -ATPase was examined and the mRNA and its protective protein levels of the sarcoplasmic reticulum(SR)Ca 2+ -ATPases(SERCA2)were assayed with RT-PCR,Western-blotting,and immune-cytochemical staining in each group.Results The results showed that NP decreased Ca 2+ concentration, increased the activity of Ca 2+ -ATPase,and improved the mRNA and protein expression of SERCA2 in hypoxia-injured myocardial cells as compared with the model group.Conclusion These results indicate that NP could attenuate the Ca 2+ overload.The mechanism might be explained as that NP could elevate the SERCA2 level, increase the activity of myocardium in rats,and further enhance the capacity of SR Ca 2+ re-uptake.展开更多
Oxidative stress plays a crucial role in cadmium(Cd)-induced myocardial injury.Mitsugumin 53(MG53)and its mediated reperfusion injury salvage kinase(RISK)pathway have been demonstrated to be closely related to myocard...Oxidative stress plays a crucial role in cadmium(Cd)-induced myocardial injury.Mitsugumin 53(MG53)and its mediated reperfusion injury salvage kinase(RISK)pathway have been demonstrated to be closely related to myocardial oxidative damage.Potentilla anserina L.polysaccharide(PAP)is a polysaccharide with antioxidant capacity,which exerts protective effect on Cd-induced damage.However,it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages.The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway.For in vitro evaluation,cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry,respectively.Furthermore,oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)staining and using superoxide dismutase(SOD),catalase(CAT),and glutathione/oxidized glutathione(GSH/GSSG)kits.The mitochondrial function was measured by JC-10 staining and ATP detection assay.Western blot was performed to detect the expression of proteins related to MG53,the RISK pathway,and apoptosis.The results indicated that Cd increased the levels of reactive oxygen species(ROS)in H9c2 cells.Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG,resulting in decreases in cell viability and increases in apoptosis.Interestingly,PAP reversed Cd-induced oxidative stress and cell apoptosis.Meanwhile,Cd reduced the expression of MG53 in H9c2 clls and inhibited the RISK pathway,which was mediated by decreasing the ratio of p-Akt^(Ser473)/Akt,p-GSK3β^(Ser9)/GSK3β and p ERK1/2/ERK1/2.In addition,Cd impaired mitochondrial function,which involved a reduction in ATP content and mitochondrial membrane potential(MMP),and an increase in the ratio of Bax/Bcl-2,cytoplasmic cytochrome c/mitochondrial cytochrome c,and Cleaved-Caspase 3/Pro-Caspase 3.Importantly,PAP alleviated Cd-induced MG53 reduction,activated the RISK pathway,and reduced mitochondrial damage.Interestingly,knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells.In sum,PAP reduces Cd-induced damage in H9c2 cells,which is mediated by increasing MG53 expression and activating the RISK pathway.展开更多
Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, a...Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, are common in many ecosystems. The strategies by which clonal plants adapt to this type of heterogeneous environment were examined in three stoloniferous herbs,Potentilla reptans L. var. sericophylla Franch., P. anserina L. and Halerpestes ruthenica (Jacq.) Qvcz., commonly inhabiting forest understories, grasslands and low saline meadows, respectively. As pairs of connected ramets were subjected to reciprocal patchiness of light and nutrients, stolon connection between the two ramets significantly enhanced biomass of both ramet growing in low light intensity but high soil nutrient condition (LH ramet) and ramet growing in high light intensity but low soil nutrient condition (HL ramet) as well as whole ramet pairs (consisting of LH ramets and HL ramets). Additionally, stolon connection greatly increased root/shoot ratio of LH ramet while significantly decreased that of HL ramet. The results indicate that a reciprocal transportation of resources between interconnected ramets and a functional specialization of ramets in uptake of abundant resources occurred. By resource sharing and functional specialization, clonal plants can efficiently acquire locally abundant resources and buffer the stress caused by reciprocal patchiness of resources.展开更多
基金financially supported by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘Potentilla anserina L.and Elymus nutans Griseb.are dominant species in the subalpine meadows of China.Grazing is one of the most important factors that influence community structure and productivity of subalpine meadows.Understanding how grazing changes photosynthetic capability is essential for preservation and restoration of grasslands.However,information about the effects of grazing on photosynthetic capability remains inadequate.Experiments were conducted in fencing and grazing areas in the Qilian Mountains,Northwest China.The leaf gas exchange and photosynthetic curves of P.anserina and E.nutans were measured at different growth stages.Results showed that grazing decreased the values of leaf gas exchange parameters,such as net photosynthetic rate,stomatal conductance,transpiration rate,and intercellular CO2 concentration of P.anserina and E.nutans.In addition,grazing decreased the values of net photosynthetic rate-photosynthetically active radiation(PN-PAR)curve parameters,such as light-saturated net photosynthetic rate,apparent quantum efficiency,light compensation point,light saturation point,and dark respiration rate.Our results demonstrated that grazing was the primary limiting factor for photosynthesis of dominant grassland species in the study area.
基金funded by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘The non-rectangular hyperbola(NRH)equation is the most popular method that plots the photosynthetic light-response(PLR)curve and helps to identify plant photosynthetic capability.However,the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development.Recently,plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation,but plant height(H),an important parameter in plant growth phases,is not taken into account.In this study,H was incorporated into the NRH equation to establish the modified NRH equation,which could be used to estimate photosynthetic capability of herbage at different growth phases.To explore photosynthetic capability of herbage,we selected the dominant herbage species Potentilla anserina L.and Elymus nutans Griseb.in the Heihe River Basin,Northwest China as the research materials.Totally,twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016.Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H.The modified NRH equation,which is established by introducing H and an H-based adjustment factor into the NRH equation,described better the PLR curves of P.anserina and E.nutans than the original ones.The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.
基金supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202201ZR0012G)Quality Evaluation and Efficient Utilization of Effective Components of Potentilla anserine Resources in Tibet(XZ202201ZD0001N).
文摘Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.
基金Natural Science Foundation of China (30672774 81073152)the Great Program of Science Foundation of Tianjin (10JCZDJC21100)
文摘Objective To investigate the protective effect of n-butanol extract from the roots of Potentilla anserina (NP) on hypoxic hippocampal neurons in neonatal rats. Methods Primary cultured hippocampal neurons were pretreated with different concentration of NP (0.25, 0.0625, and 0.0156 mg/mL) before incubation in a low oxygen (0.1%) environment for 4 h. Cell viability was evaluated by Trypan blue staining assay. Lactate dehydrogenase (LDH) released by neurons into the medium was measured. The activity of superoxide dismutase (SOD) in cell cytosol was determined using nitroblue tetrazolium. Morphological changes and mitochondrial function were observed by transmission electron microscopy. Results Hypoxic injury could decrease the cells viability of neuron, enhance LDH release (P < 0.05), decrease SOD activity, and increase mitochondrial injury. Pretreatment with NP significantly increased cell viability, decreased LDH release (P < 0.05), promoted SOD activity (P < 0.05), and remarkably improved cellular ultra-microstructure compared with the model group. Conclusion NP could protect the primary hippocampal neurons from hypoxic injury by attenuating mitochondrial cell death.
基金National Natural Science Foundation of China (81073152)the Great Program of Science Foundation of Tianjin (10JCZDJC21100)
文摘Objective To investigate the effect of n-butanol extract from Potentilla anserina(NP)intervention on hypoxia-induced Ca 2+ overload and SERCA2 expression of rat cardiomyocytes.Methods Primary cultured myocardial cell from SD neonatal rat(1-3 d)was used in the establishment of hypoxia model.After hypoxia for 3 h,the Ca 2+ concentration of myocardial cells was measured with fura-2/AM fluorescent probe,and the biochemical indicator intracellular Ca 2+ -ATPase was examined and the mRNA and its protective protein levels of the sarcoplasmic reticulum(SR)Ca 2+ -ATPases(SERCA2)were assayed with RT-PCR,Western-blotting,and immune-cytochemical staining in each group.Results The results showed that NP decreased Ca 2+ concentration, increased the activity of Ca 2+ -ATPase,and improved the mRNA and protein expression of SERCA2 in hypoxia-injured myocardial cells as compared with the model group.Conclusion These results indicate that NP could attenuate the Ca 2+ overload.The mechanism might be explained as that NP could elevate the SERCA2 level, increase the activity of myocardium in rats,and further enhance the capacity of SR Ca 2+ re-uptake.
基金supported by the Open Fund of Key Laboratory of Dunhuang Medicine,Ministry of Education(No.DHYX20-09)the Youth Research Foundation of Gansu University of Chinese Medicine(No.ZQ2017-14)+1 种基金the Natural Science Foundation of Gansu Province of China(No.20JR10RA600)the Young Doctors Fund Project of Colleges and Universities in Gansu Provine(No.2022QB-133)。
文摘Oxidative stress plays a crucial role in cadmium(Cd)-induced myocardial injury.Mitsugumin 53(MG53)and its mediated reperfusion injury salvage kinase(RISK)pathway have been demonstrated to be closely related to myocardial oxidative damage.Potentilla anserina L.polysaccharide(PAP)is a polysaccharide with antioxidant capacity,which exerts protective effect on Cd-induced damage.However,it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages.The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway.For in vitro evaluation,cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry,respectively.Furthermore,oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)staining and using superoxide dismutase(SOD),catalase(CAT),and glutathione/oxidized glutathione(GSH/GSSG)kits.The mitochondrial function was measured by JC-10 staining and ATP detection assay.Western blot was performed to detect the expression of proteins related to MG53,the RISK pathway,and apoptosis.The results indicated that Cd increased the levels of reactive oxygen species(ROS)in H9c2 cells.Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG,resulting in decreases in cell viability and increases in apoptosis.Interestingly,PAP reversed Cd-induced oxidative stress and cell apoptosis.Meanwhile,Cd reduced the expression of MG53 in H9c2 clls and inhibited the RISK pathway,which was mediated by decreasing the ratio of p-Akt^(Ser473)/Akt,p-GSK3β^(Ser9)/GSK3β and p ERK1/2/ERK1/2.In addition,Cd impaired mitochondrial function,which involved a reduction in ATP content and mitochondrial membrane potential(MMP),and an increase in the ratio of Bax/Bcl-2,cytoplasmic cytochrome c/mitochondrial cytochrome c,and Cleaved-Caspase 3/Pro-Caspase 3.Importantly,PAP alleviated Cd-induced MG53 reduction,activated the RISK pathway,and reduced mitochondrial damage.Interestingly,knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells.In sum,PAP reduces Cd-induced damage in H9c2 cells,which is mediated by increasing MG53 expression and activating the RISK pathway.
文摘Environments with reciprocal patchiness of resources, in which the availability of two resources such as light and soil nutrients are patchily distributed in horizontal space and negatively correlated in each patch, are common in many ecosystems. The strategies by which clonal plants adapt to this type of heterogeneous environment were examined in three stoloniferous herbs,Potentilla reptans L. var. sericophylla Franch., P. anserina L. and Halerpestes ruthenica (Jacq.) Qvcz., commonly inhabiting forest understories, grasslands and low saline meadows, respectively. As pairs of connected ramets were subjected to reciprocal patchiness of light and nutrients, stolon connection between the two ramets significantly enhanced biomass of both ramet growing in low light intensity but high soil nutrient condition (LH ramet) and ramet growing in high light intensity but low soil nutrient condition (HL ramet) as well as whole ramet pairs (consisting of LH ramets and HL ramets). Additionally, stolon connection greatly increased root/shoot ratio of LH ramet while significantly decreased that of HL ramet. The results indicate that a reciprocal transportation of resources between interconnected ramets and a functional specialization of ramets in uptake of abundant resources occurred. By resource sharing and functional specialization, clonal plants can efficiently acquire locally abundant resources and buffer the stress caused by reciprocal patchiness of resources.