With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the exis...With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.展开更多
In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequ...In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.展开更多
Green building development in China relies mainly on compulsory measures that lack incentive policies to motivate the enthusiasm of real estate developers.A floor area ratio bonus is encouraged by the Chinese State Co...Green building development in China relies mainly on compulsory measures that lack incentive policies to motivate the enthusiasm of real estate developers.A floor area ratio bonus is encouraged by the Chinese State Council.In order to ensure the feasibility of a reward quota,residential buildings that met the requirement for energy efficiency during the official assessment in Ningbo in 2014 were selected as research objects.The amount of energy and water savings in terms of the Assessment Standard for Green Building is converted into carbon emissions.Carbon emissions of different star-rated green buildings are then measured in accordance with the actual water and power consumption of residential dwellings in 2014.A regression equation is set up concerning the floor area ratio and index for residential land per capita.A carbon emission-based method is proposed for measuring the reward quota associated with floor area ratio and recommendations are given for development using green building.展开更多
In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-ma...In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.展开更多
The present article investigates the physical phenomena associated with the wave passage effect into a building considering the ground floor as the soft floor with the conformity of the up-to-date scenario of the cons...The present article investigates the physical phenomena associated with the wave passage effect into a building considering the ground floor as the soft floor with the conformity of the up-to-date scenario of the construction of high rise buildings, due to shear excitation of the base. The aim of the study is to analyse the post-earthquake situation of the building in respect to its health. With this vision, the ensuing problem on two-dimensional building models, non-incorporating soil-structure interaction, is being tackled by both analytical and neural network approaches. Computational results from both ends (of the approaches) show that the wave energy does not always propagate from the ground into the building, but for lower frequency range it sails to the building without any disturbances. However, for higher frequency range, the computational results show that the building experiences large “torsional” deformations, as a result the building may collapse. Finally, both the approaches maintain a good agreement among themselves. The present investigation may lead to a long way in contributing to better and more rational, simplified design criteria.展开更多
The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis ...The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis is performed by considering the soil-structure interaction effects and based on the model of the reactor building in a typical pressurized water reactor nuclear power plant (NPP). The numerical results show that for the typical floor selected, while the relative increment ratio of the dynamic shear wave velocity varies from -30% to 30% compared to the basis of 1 930 m/s, the relative variation of the horizontal response spectra peak value lies in the scope of ±10% for the internal structure, and the relative variation of the frequency corresponding to the spectra peak is 0.0% in most cases. The relative variation of the vertical response spectra peak value lies in the scope of - 10% to 22%, and the relative variation of the frequency corresponding to the Spectra peak lies in the scope of - 22% to 4%. The analysis indicates that the dynamic shear wave velocity and the Poisson's ratio of the rock would affect the seismic response of structure and the soil-structure interaction effects should be considered in seismic analysis and design of NPP even for a hard rock site.展开更多
In the SILER (Seismic-Initiated events risk mitigation in LEad-cooled Reactors) Project, it is interesting to apply seismic isolation technology for the reactor assembly of the fixed base reactor building for ADS (...In the SILER (Seismic-Initiated events risk mitigation in LEad-cooled Reactors) Project, it is interesting to apply seismic isolation technology for the reactor assembly of the fixed base reactor building for ADS (Acceleration Driven System) heavy liquid reactor MYRRHA (Multipurpose Hybrid Research Reactor for High-Tech Application) which contains the most critical safety related components, such as reactor vessel, safe shutdown and control rod mechanisms, primary heat exchangers, primary pumps, spoliation target assembly and fuel assemblies, etc. The purpose of this paper is to investigate the possibility of an application of a partial seismic isolation to the safety critical components only, here, the reactor assembly. This paper presents the preliminary analysis results of the isolated reactor assembly and compares these with those of seismic isolated ADS reactor building. The analysis results show the reduction of the seismic acceleration response but the increase of the relative displacement for the reactor assembly. Some safety issues, especially, coolant's incapable covering the reactor core make difficult to apply for the partial seismic isolation of the ADS reactor assembly due to large relative displacement occurring the partial isolation system. Further study on the partial seismic isolation application of the critical safety components are also discussed.展开更多
Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluent...Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluents contained in the materials appeared at the end of 90´s.This situation was supported by the Council of Europe in 2004 to reduce VOC emissions to zero till 2020.Solvent materials were thus largely replaced by solvent free materials from which the volatile substances are not released into the air.But pressure continued to increase,and over the past decade began to take centre stage water-based epoxy.On the Czech market solvent based material is still occasionally used,but predominant are solvent free materials.There are no commonly used materials containing wastes as fillers in new water-borne and solvent-free epoxy materials.Characteristics identification of the waste material as a potential filler is a set of properties that determine the limits of secondary raw materials or waste as a filler.This paper describes the basic characteristics which must be selected to meet the requirements,to affect negatively the workability,sedimentation,properties and behavior of the final floor system.Some materials must comply with special requirements,such as resistance to chemicals,etc.Next part of paper talks about utilization of polymer floors and their mechanical properties.展开更多
A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected ...A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected by climatic conditions.Indoor and outdoor environmental disturbances and the system’s control strategy affect the indoor thermal comfort and energy efficiency of the system.Firstly,a multi-story residential building model was established in this study.Transient system simulation program was used to study the operation dynamics of three control strategies of the RFCS based on the calibrated model.Then,the performance of the control strategies in five climate zones in China were compared using multi-criteria decision-making in combination.The results show that control strategy has a negligible effect on condensation risk,but the thermal comfort and economic performance differ for different control strategies.The adaptability of different control strategies varies in different climate zones based on the consideration of multiple factors.The performance of the direct-ground cooling source system is better in Hot summer and warm winter zone.The variable air volume control strategy scores higher in Serve cold and Temperate zones,and the hours exceeding thermal comfort account for less than 3%of the total simulation period.Therefore,it is suggested to choose the RFCS control strategy for residential buildings according to the climate zone characteristics,to increase the energy savings.Our results provide a reliable reference for implementing RFCSs in residential buildings.展开更多
Reinforced concrete(RC)as a material is most commonly used for buildings construction.Several floor systems are available following the structural and architectural requirements.The current research study provides cos...Reinforced concrete(RC)as a material is most commonly used for buildings construction.Several floor systems are available following the structural and architectural requirements.The current research study provides cost and input energy comparisons of RC office buildings of different floor systems.Conventional solid,ribbed,flat plate and flat slab systems are considered in the study.Building models in three-dimensional using extended threedimensional analysis of building systems(ETABS)and in two-dimensional using slab analysis by the finite element(SAFE)are developed for analysis purposes.Analysis and design using both software packages and manual calculations are employed to obtain the optimum sections and reinforcements to fit cities of low seismic intensities for all the considered building systems.Two ground motion records of low peak ground acceleration(PGA)levels are used to excite the models to measure the input energies.Uniformat cost estimating system is adopted to categorize building components according to 12 divisions.Also,Microsoft(MS)Project is utilized to identify the construction cost and duration of each building system.The study shows that floor system significantly causes changes in the input energy to structures.In addition,the slight increase in the PGA increases the amount of input energy particularly flat plate system.Estimated cost of the flat plate system that the flat slab system is of higher value as compared to ribbed and conventional slab systems.The use of drop panels increases this value as well.Moreover,the estimated cost of the ribbed slab system exceeds that of conventional system.展开更多
基金the grant fromthe Key Technologies Research and Development Program(Grant No.2021YFF0602005)the National Natural Science Foundation of China(No.51678135)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033).
文摘With the development of economy and society and the growth of population,the high-rise and multi-function of commercial buildings have become an international trend.But it also poses huge fire hazards.Most of the existing studies’research objects are predominantly high-rise residential buildings,without considering the impact of different functional zones(Standard floor,entertainment zone,office zone,equipment room and so on)and personnel distribution of commercial buildings evacuation.And the influence of using elevators to carry evacuees on the refuge floor on personnel evacuation is rarely studied.In this work,the fire scenario of the Yangtze River InternationalConferenceCenter,a high-rise commercial building,is simulated with the Pyrosim programto get the necessary parameters under various fire scenarios and to calculate the available evacuation time TASET.At the same time,according to the complex functional zone of the commercial high-rise building and the distribution of people in different time periods,a reasonable evacuation strategy is developed and simulated by Pathfinder software.The results indicate that unorganized evacuation will lead individuals to take the erroneous evacuation route,resulting in a vast region of congestion;comprehensive consideration of the time staggering and the reasonable distribution of evacuation routes can significantly improve evacuation efficiency,and the TRSET of night and working hours is 36.6%–55.3%and 49.9%–79.6%of unorganized evacuation,respectively.For the night fire,60%of the people use elevator-refuge floor to evacuate is the optimal strategy;for the fire during working hours,half of the people on standard floors use the elevator to evacuate and people on multifunctional floors evacuate in four batches is the best plan.The results of this study can provide viable solutions and a foundation for analyzing the fire evacuation and safety of big commercial high-rise buildings.
文摘In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.
基金supported by Zhejiang Provincial Construction Research Projects(2015K150)Natural Science Foundation of Ningbo(2015A610302).
文摘Green building development in China relies mainly on compulsory measures that lack incentive policies to motivate the enthusiasm of real estate developers.A floor area ratio bonus is encouraged by the Chinese State Council.In order to ensure the feasibility of a reward quota,residential buildings that met the requirement for energy efficiency during the official assessment in Ningbo in 2014 were selected as research objects.The amount of energy and water savings in terms of the Assessment Standard for Green Building is converted into carbon emissions.Carbon emissions of different star-rated green buildings are then measured in accordance with the actual water and power consumption of residential dwellings in 2014.A regression equation is set up concerning the floor area ratio and index for residential land per capita.A carbon emission-based method is proposed for measuring the reward quota associated with floor area ratio and recommendations are given for development using green building.
基金Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Knowledge Economy, Republic of Korea under Grant No. 2010T100101066
文摘In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of floor response spectra at certain elevations are also in good agreement.
文摘The present article investigates the physical phenomena associated with the wave passage effect into a building considering the ground floor as the soft floor with the conformity of the up-to-date scenario of the construction of high rise buildings, due to shear excitation of the base. The aim of the study is to analyse the post-earthquake situation of the building in respect to its health. With this vision, the ensuing problem on two-dimensional building models, non-incorporating soil-structure interaction, is being tackled by both analytical and neural network approaches. Computational results from both ends (of the approaches) show that the wave energy does not always propagate from the ground into the building, but for lower frequency range it sails to the building without any disturbances. However, for higher frequency range, the computational results show that the building experiences large “torsional” deformations, as a result the building may collapse. Finally, both the approaches maintain a good agreement among themselves. The present investigation may lead to a long way in contributing to better and more rational, simplified design criteria.
基金SUPPORTED BY NATIONAL NATURAL SCIENCE FOUNDATION FOR DISTINGUISHED YOUNG SCHOLARS OF CHINA (NO. 50425824).
文摘The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis is performed by considering the soil-structure interaction effects and based on the model of the reactor building in a typical pressurized water reactor nuclear power plant (NPP). The numerical results show that for the typical floor selected, while the relative increment ratio of the dynamic shear wave velocity varies from -30% to 30% compared to the basis of 1 930 m/s, the relative variation of the horizontal response spectra peak value lies in the scope of ±10% for the internal structure, and the relative variation of the frequency corresponding to the spectra peak is 0.0% in most cases. The relative variation of the vertical response spectra peak value lies in the scope of - 10% to 22%, and the relative variation of the frequency corresponding to the Spectra peak lies in the scope of - 22% to 4%. The analysis indicates that the dynamic shear wave velocity and the Poisson's ratio of the rock would affect the seismic response of structure and the soil-structure interaction effects should be considered in seismic analysis and design of NPP even for a hard rock site.
文摘In the SILER (Seismic-Initiated events risk mitigation in LEad-cooled Reactors) Project, it is interesting to apply seismic isolation technology for the reactor assembly of the fixed base reactor building for ADS (Acceleration Driven System) heavy liquid reactor MYRRHA (Multipurpose Hybrid Research Reactor for High-Tech Application) which contains the most critical safety related components, such as reactor vessel, safe shutdown and control rod mechanisms, primary heat exchangers, primary pumps, spoliation target assembly and fuel assemblies, etc. The purpose of this paper is to investigate the possibility of an application of a partial seismic isolation to the safety critical components only, here, the reactor assembly. This paper presents the preliminary analysis results of the isolated reactor assembly and compares these with those of seismic isolated ADS reactor building. The analysis results show the reduction of the seismic acceleration response but the increase of the relative displacement for the reactor assembly. Some safety issues, especially, coolant's incapable covering the reactor core make difficult to apply for the partial seismic isolation of the ADS reactor assembly due to large relative displacement occurring the partial isolation system. Further study on the partial seismic isolation application of the critical safety components are also discussed.
基金supported by the project"OKTAEDR-partnership and building network."Project registration number is cz.1.07./2.4.00/31.0012.
文摘Recently the manufacture of epoxy coating and flooring materials begun to be under strong pressure to use more environmentally friendly raw materials in its composition.First tendency to reduce of solvents and diluents contained in the materials appeared at the end of 90´s.This situation was supported by the Council of Europe in 2004 to reduce VOC emissions to zero till 2020.Solvent materials were thus largely replaced by solvent free materials from which the volatile substances are not released into the air.But pressure continued to increase,and over the past decade began to take centre stage water-based epoxy.On the Czech market solvent based material is still occasionally used,but predominant are solvent free materials.There are no commonly used materials containing wastes as fillers in new water-borne and solvent-free epoxy materials.Characteristics identification of the waste material as a potential filler is a set of properties that determine the limits of secondary raw materials or waste as a filler.This paper describes the basic characteristics which must be selected to meet the requirements,to affect negatively the workability,sedimentation,properties and behavior of the final floor system.Some materials must comply with special requirements,such as resistance to chemicals,etc.Next part of paper talks about utilization of polymer floors and their mechanical properties.
基金This work was funded by the Natural Science Foundation of Shandong Province(ZR2021ME199,ZR2021ME237)the Support Plan for Outstanding Youth Innovation Team in Colleges and Universities of Shandong Province(2019KJG005).This work was also supported by the Plan of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province,and Funding for Domestic Visiting Scholars at Shandong Jianzhu University.
文摘A radiant floor cooling system(RFCS)is a high-comfort and low energy consumption system suitable for residential buildings.Radiant floor systems usually work with fresh air,and their operating performance is affected by climatic conditions.Indoor and outdoor environmental disturbances and the system’s control strategy affect the indoor thermal comfort and energy efficiency of the system.Firstly,a multi-story residential building model was established in this study.Transient system simulation program was used to study the operation dynamics of three control strategies of the RFCS based on the calibrated model.Then,the performance of the control strategies in five climate zones in China were compared using multi-criteria decision-making in combination.The results show that control strategy has a negligible effect on condensation risk,but the thermal comfort and economic performance differ for different control strategies.The adaptability of different control strategies varies in different climate zones based on the consideration of multiple factors.The performance of the direct-ground cooling source system is better in Hot summer and warm winter zone.The variable air volume control strategy scores higher in Serve cold and Temperate zones,and the hours exceeding thermal comfort account for less than 3%of the total simulation period.Therefore,it is suggested to choose the RFCS control strategy for residential buildings according to the climate zone characteristics,to increase the energy savings.Our results provide a reliable reference for implementing RFCSs in residential buildings.
文摘Reinforced concrete(RC)as a material is most commonly used for buildings construction.Several floor systems are available following the structural and architectural requirements.The current research study provides cost and input energy comparisons of RC office buildings of different floor systems.Conventional solid,ribbed,flat plate and flat slab systems are considered in the study.Building models in three-dimensional using extended threedimensional analysis of building systems(ETABS)and in two-dimensional using slab analysis by the finite element(SAFE)are developed for analysis purposes.Analysis and design using both software packages and manual calculations are employed to obtain the optimum sections and reinforcements to fit cities of low seismic intensities for all the considered building systems.Two ground motion records of low peak ground acceleration(PGA)levels are used to excite the models to measure the input energies.Uniformat cost estimating system is adopted to categorize building components according to 12 divisions.Also,Microsoft(MS)Project is utilized to identify the construction cost and duration of each building system.The study shows that floor system significantly causes changes in the input energy to structures.In addition,the slight increase in the PGA increases the amount of input energy particularly flat plate system.Estimated cost of the flat plate system that the flat slab system is of higher value as compared to ribbed and conventional slab systems.The use of drop panels increases this value as well.Moreover,the estimated cost of the ribbed slab system exceeds that of conventional system.