In this study, Al_2O_3-washcoated SiC(Al_2O_3–SiC) foams and Al_2O_3 powder were employed as the supports of a Ni catalyst for the liquid-phase hydrogenation of benzaldehyde. A series of Ni/Al_2O_3–SiC foam catalyst...In this study, Al_2O_3-washcoated SiC(Al_2O_3–SiC) foams and Al_2O_3 powder were employed as the supports of a Ni catalyst for the liquid-phase hydrogenation of benzaldehyde. A series of Ni/Al_2O_3–SiC foam catalysts and Ni/Al_2O_3 powder catalysts with a Ni loading from 10 wt% to 37 wt% of the weight of Al_2O_3 were first prepared by a deposition–precipitation(DP) method. The catalytic activity and recyclability of both kinds of catalysts were then compared. Although it had a smaller accessible surface area with the reactant, the foam catalyst with a Ni loading of 16 wt% exhibited a slightly higher conversion of benzaldehyde after 6 h(of 99.3%) in comparison with the Ni/Al_2O_3 catalyst with identical Ni loading(conversion of 97.5%). When the Ni loading increased from 16 wt% to 37 wt%, the reaction rate obtained with the foam catalyst increased significantly from 0.108 to 0.204 mol L^(-1)h^(-1), whereas the reaction rate obtained with the powder catalyst increased from 0.106 to 0.123 mol L^(-1)h^(-1). Furthermore, the specific activity(moles of benzaldehyde consumed by 1 g min^(-1)of Ni) of the foam catalyst with a Ni loading above 30 wt% was superior to that of the powder catalyst because of its smaller Ni-particle size and higher mass-transfer rate. The foam catalyst displayed a high recyclability as a function of run times owing to the strong interaction between the Ni component and the Al_2O_3 coating. The conversion of benzaldehyde over the foam catalyst remained almost unchanged after being used 8 times. In comparison, a drop of 43% in the conversion of benzaldehyde with the powder catalyst was observed after being used 7 times due to the leaching of the Ni component.展开更多
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the ...An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).展开更多
In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435&...In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435°C by temperature gradient growth. The effects of Fe additive on the crystal morphology are discussed in the diamond crystallization process.Furthermore, Fourier infrared measurement results indicate that the spectrum of the diamond obtained from Ni + Fe–C system after annealing treatment is nearly consistent with that of natural diamond crystal. We believe that this study is of benefit to a further understanding of the growth mechanism of natural diamond.展开更多
基金the financial support of the project from the National Key Research&Development Program of China(No.2017YFB0310405)
文摘In this study, Al_2O_3-washcoated SiC(Al_2O_3–SiC) foams and Al_2O_3 powder were employed as the supports of a Ni catalyst for the liquid-phase hydrogenation of benzaldehyde. A series of Ni/Al_2O_3–SiC foam catalysts and Ni/Al_2O_3 powder catalysts with a Ni loading from 10 wt% to 37 wt% of the weight of Al_2O_3 were first prepared by a deposition–precipitation(DP) method. The catalytic activity and recyclability of both kinds of catalysts were then compared. Although it had a smaller accessible surface area with the reactant, the foam catalyst with a Ni loading of 16 wt% exhibited a slightly higher conversion of benzaldehyde after 6 h(of 99.3%) in comparison with the Ni/Al_2O_3 catalyst with identical Ni loading(conversion of 97.5%). When the Ni loading increased from 16 wt% to 37 wt%, the reaction rate obtained with the foam catalyst increased significantly from 0.108 to 0.204 mol L^(-1)h^(-1), whereas the reaction rate obtained with the powder catalyst increased from 0.106 to 0.123 mol L^(-1)h^(-1). Furthermore, the specific activity(moles of benzaldehyde consumed by 1 g min^(-1)of Ni) of the foam catalyst with a Ni loading above 30 wt% was superior to that of the powder catalyst because of its smaller Ni-particle size and higher mass-transfer rate. The foam catalyst displayed a high recyclability as a function of run times owing to the strong interaction between the Ni component and the Al_2O_3 coating. The conversion of benzaldehyde over the foam catalyst remained almost unchanged after being used 8 times. In comparison, a drop of 43% in the conversion of benzaldehyde with the powder catalyst was observed after being used 7 times due to the leaching of the Ni component.
基金supported by the Royal Academy of Engineering,United Kingdom
文摘An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).
基金supported by the National Natural Science Foundation of China(Grant No.51172089)the Natural Science Foundation of Guizhou Provincial Education Department,China(Grant No.KY[2013]183)the Research Fund for the Doctoral Program of Tongren University,China(Grant Nos.DS1302 and trxy S1415)
文摘In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435°C by temperature gradient growth. The effects of Fe additive on the crystal morphology are discussed in the diamond crystallization process.Furthermore, Fourier infrared measurement results indicate that the spectrum of the diamond obtained from Ni + Fe–C system after annealing treatment is nearly consistent with that of natural diamond crystal. We believe that this study is of benefit to a further understanding of the growth mechanism of natural diamond.