Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffra...Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffraction (XRD) patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle wavegnide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell comoosite oowders.展开更多
Mo powders with average particle size of 3 μm were attempted to coat with copper by electroless plating technique. The effect of the solution composition and plating conditions on the electroless copper plating was s...Mo powders with average particle size of 3 μm were attempted to coat with copper by electroless plating technique. The effect of the solution composition and plating conditions on the electroless copper plating was studied. The uncoated and coated powders were subjected to the microstructural studies by SEM and the phases were analyzed by XRD. The results indicate that the Mo powders are coated with copper,at the same time,Mo-Cu composite powders with Cu content ranging from 15% to 85%(mass fraction) can be obtained. The optimal values of pH,HCHO concentration and temperature are in the ranges of 12-13,22-26 ml/L and 60-65 ℃,respectively. The diffusion-shrinkage autocatalytic model is suggested for the growth mechanism of electroless coating over the surface.展开更多
Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper ...Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper bath was evaluated through the combination of process parameters like pH and temperature. The optimized values ofpH and temperature were found to be 12.5 and 60℃, respectively, which attributes to the bright maroon color of the coating with an increase in weight of 46%. The uncoated and coated powders were subjected to microstructural studies using scanning electron microscope (SEM) and the phases were analyzed using X-my diffrction (XRD). An attempt was made to understand the growth mechanism of the coating. The diffusion-shrinkage autocatalytic model was suggested for copper growth on the molybdenum surface.展开更多
A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducin...A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducing consumption of copper powders. In the processes of sensitization and activation, AgNO3 replaces the conventional PdCl2, which solves the impurity of bath. Oxide film on the surface of copper powders was tested by chemical analysis. Ag element tested by XRD and XRF is in the form of Ago and exists on the surface of copper powders, which acts as catalyzer in reduction reaction. Morphology and composition of the coating were characterized by SEM and XRD respectively.展开更多
Ni/C core-shell composite powders were prepared by electroless nickel-plating. The effects of concentration of NiSO4,bathing temperature,ratio of hydrazine hydrate to NiSO4,pH of the solution,amounts of complexing rea...Ni/C core-shell composite powders were prepared by electroless nickel-plating. The effects of concentration of NiSO4,bathing temperature,ratio of hydrazine hydrate to NiSO4,pH of the solution,amounts of complexing reagent and surfactant,bath load of activated carbon and reaction time,and so on,on the preparation of Ni/C core-shell composite powders were studied. The results show that the principal factors for Ni/C composite powders preparation are bathing temperature,ratio of hydrazine hydrate to NiSO4 and pH of the solution. The optimum conditions are plating at 90 ℃ with pH10.7 and molar ratio of N2H4·H2O to Ni2+of 3.0. The plated nickel powders are observed to be sphere-like in morphology with size about 100 nm. The maximum dielectric loss of Ni/C core-shell composite powders is about 0.35,and its magnetic loss was low with value about 0 in 2-16 GHz.展开更多
A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sul...A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.展开更多
Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C....Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C. The prepared powders and sintered copper/diamond composites were investigated using X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray analysis (SEM/EDS). The effect of diamond contents in the Cu/diamond composite on the different properties of the composite was studied. On fracture surfaces of the Cu/uncoated diamond composites, it was found that there is a very weak bonding between diamonds and pure copper matrix. In order to improve the bonding strength between copper and the reinforcement, diamond particles were electroless coated with NiWB alloy. The results show that coated diamond particles distribute uniformly in copper composite and the interface between diamond particles and Cu matrix is clear and well bonded due to the formation of a thin layer from WB2, Ni3B, and BC2 between Cu and diamond interfaces. The properties of the composites materials using coated powder, such as hardness, transverse rupture strength, thermal conductivity, and coefficient of thermal expansion (CTE) were exhibit greater values than that of the composites using uncoated diamond powder. Additionally, the results reveals that the maximum diamond incorporation was attained at 20 Vf%. Actually, Cu/20 Vf% coated diamond com- posite yields a high thermal conductivity of 430 W/mK along with a low coefficient of thermal expansion (CTE) 6 × 10–6/K.展开更多
基金This work was financially supported by the Science Fund for Distinguished Young Scholars of Henan Province, China (No. 0512002400)
文摘Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffraction (XRD) patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle wavegnide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell comoosite oowders.
基金Project (50301017) supported by the National Natural Science Foundation of China
文摘Mo powders with average particle size of 3 μm were attempted to coat with copper by electroless plating technique. The effect of the solution composition and plating conditions on the electroless copper plating was studied. The uncoated and coated powders were subjected to the microstructural studies by SEM and the phases were analyzed by XRD. The results indicate that the Mo powders are coated with copper,at the same time,Mo-Cu composite powders with Cu content ranging from 15% to 85%(mass fraction) can be obtained. The optimal values of pH,HCHO concentration and temperature are in the ranges of 12-13,22-26 ml/L and 60-65 ℃,respectively. The diffusion-shrinkage autocatalytic model is suggested for the growth mechanism of electroless coating over the surface.
文摘Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper bath was evaluated through the combination of process parameters like pH and temperature. The optimized values ofpH and temperature were found to be 12.5 and 60℃, respectively, which attributes to the bright maroon color of the coating with an increase in weight of 46%. The uncoated and coated powders were subjected to microstructural studies using scanning electron microscope (SEM) and the phases were analyzed using X-my diffrction (XRD). An attempt was made to understand the growth mechanism of the coating. The diffusion-shrinkage autocatalytic model was suggested for copper growth on the molybdenum surface.
基金Funded by the National Natural Science Foundation of China(50474047)
文摘A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducing consumption of copper powders. In the processes of sensitization and activation, AgNO3 replaces the conventional PdCl2, which solves the impurity of bath. Oxide film on the surface of copper powders was tested by chemical analysis. Ag element tested by XRD and XRF is in the form of Ago and exists on the surface of copper powders, which acts as catalyzer in reduction reaction. Morphology and composition of the coating were characterized by SEM and XRD respectively.
基金Project (0512002400) supported by Science Fund for Distinguished Young Scholars of Henan Province, China
文摘Ni/C core-shell composite powders were prepared by electroless nickel-plating. The effects of concentration of NiSO4,bathing temperature,ratio of hydrazine hydrate to NiSO4,pH of the solution,amounts of complexing reagent and surfactant,bath load of activated carbon and reaction time,and so on,on the preparation of Ni/C core-shell composite powders were studied. The results show that the principal factors for Ni/C composite powders preparation are bathing temperature,ratio of hydrazine hydrate to NiSO4 and pH of the solution. The optimum conditions are plating at 90 ℃ with pH10.7 and molar ratio of N2H4·H2O to Ni2+of 3.0. The plated nickel powders are observed to be sphere-like in morphology with size about 100 nm. The maximum dielectric loss of Ni/C core-shell composite powders is about 0.35,and its magnetic loss was low with value about 0 in 2-16 GHz.
基金Funded by the National Natural Science Foundation of China(Nos.51202175 and 11072228)the National 111 Project(No.B13035)
文摘A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H203) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H203 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35℃) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu~. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.
文摘Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C. The prepared powders and sintered copper/diamond composites were investigated using X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray analysis (SEM/EDS). The effect of diamond contents in the Cu/diamond composite on the different properties of the composite was studied. On fracture surfaces of the Cu/uncoated diamond composites, it was found that there is a very weak bonding between diamonds and pure copper matrix. In order to improve the bonding strength between copper and the reinforcement, diamond particles were electroless coated with NiWB alloy. The results show that coated diamond particles distribute uniformly in copper composite and the interface between diamond particles and Cu matrix is clear and well bonded due to the formation of a thin layer from WB2, Ni3B, and BC2 between Cu and diamond interfaces. The properties of the composites materials using coated powder, such as hardness, transverse rupture strength, thermal conductivity, and coefficient of thermal expansion (CTE) were exhibit greater values than that of the composites using uncoated diamond powder. Additionally, the results reveals that the maximum diamond incorporation was attained at 20 Vf%. Actually, Cu/20 Vf% coated diamond com- posite yields a high thermal conductivity of 430 W/mK along with a low coefficient of thermal expansion (CTE) 6 × 10–6/K.