期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deformation Behavior of Hot Isostatic Pressing FGH96 Superalloy 被引量:2
1
作者 刘玉红 李付国 喻宏波 《Transactions of Tianjin University》 EI CAS 2006年第4期281-285,共5页
The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow ... The deformation behavior of hot isostatic pressing (HIP) FGH96 superalloy was characterized in the temperature range of 1000-1100 ℃ and strain rate range of 0. 001-0. 1 s^-1 using hot compression testing. The flow curves of HIP FGH96, superalloy during hot deformation was analyzed systematically. The results show that deformation temperature, strain rate and strain are the main influence factors on flow stress of HIP FGH96 superalloy during hot deformation. The flow stress displays a peak at a critical strain and then decreases with further increase in strain. For a given strain, the flow stress decreases with the increase of deformation temperature, and increases with the increase of strain rate. A mathematical model of these flow curves was established through regression analysis and taking the strain as a modification factor. The calculated stress values agree well with the experimental values. 展开更多
关键词 powder metallurgical superalloy hot isostatic pressing compression testing mathematical model regression analysis
下载PDF
Characterization of Interfacial Bonding Mechanism for Graphene-Modified Powder Metallurgy Nickle-Based Superalloy
2
作者 Jin-Wen Zou Xiao-Feng Wang +4 位作者 Jie Yang Chuan-Bo Ji Xu-Qing Wang Xian-Qiang Fan Zhi-Peng Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第7期753-760,共8页
A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optica... A modified FGH96 superalloy using 0.1 wt% graphene was successfully prepared using the wet mixing method. The interracial bonding mechanism between the graphene and the superalloy matrix was characterized using optical micro- scope, scanning electronic microscope, transmission electronic microscope and X-ray tomography. The results revealed that the graphene could be dispersed uniformly inside the matrix of the superalloy, and the bonding interface between graphene and the superalloy showed a rather diffusion instead of abrupt distinction, suggesting that the interface was formed via chemical fusion rather than a mechanical combination. The uniform dispersity of the graphene inside the superalloy matrix could improve the tensile properties significantly, including tensile strength, plasticity and yield strength. The existence of the graphene at the fracture surface further verified that the graphene could increase the effective bearing force of the material during the tensile test. 展开更多
关键词 powder metallurgical(PM)superalloy GRAPHENE Interfacial binding mechanism Mechanical propertiesCharacterization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部