期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
CHARACTERISTICS OF FATIGUE SURFACE MICROCRACK GROWTH IN VICINAL INCLUSION FOR POWDER METALLURGY ALLOYS 被引量:5
1
作者 WangXishu LiYongqiang 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期327-333,共7页
Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fati... Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fatigue failure.In this paper,an experimental investigation of fatigue microcrack propagation in the vicinal inclusion were carried out by the servo-hydraulic fatigue test system with scanning electron microscope(SEM).It has been found from the SEM images that the fatigue surface microcrack occurs in the matrix and inclusion.According to the SEM images,the characteristics of fatigue crack initiation and growth in vicinal inclusion for powder metallurgy alloys are analyzed in detail.The effect of the geometrical shape and material type of surface inclusions on the cracking is also discussed with the finite element method(FEM). 展开更多
关键词 powder metallurgy alloy INCLUSION FATIGUE MICROCRACK FEM
下载PDF
Improvement of Ductility of Powder Metallurgy Titanium Alloys by Addition of Rare Earth Element 被引量:7
2
作者 Yong LIU Lifang CHEN +3 位作者 Weifeng WEI Huiping TANG Bin LIU Baiyun HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第4期465-469,共5页
Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated b... Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct. 展开更多
关键词 powder metallurgy titanium alloy Mechanical properties MICROSTRUCTURE Rare earth element
下载PDF
Processing TiAl-Based Alloy by Elemental Powder Metallurgy 被引量:3
3
作者 Yong LIU, Baiyun HUANG, Yuehui HE and Kechao ZHOU (National Key Laboratory for Powder Metallurgy, Central South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期605-610,共6页
TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown t... TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service. 展开更多
关键词 TIAL Processing TiAl-Based alloy by Elemental powder metallurgy
下载PDF
SOME DEVELOPMENTS IN RAPIDLY SOLIDIFIED ALUMINUM ALLOYS FOR ELEVATED TEMPERATURE APPLICATIONS 被引量:1
4
作者 P.Y. Li, S.L. Dai, C.Y. Li and B.C. Liu Beijing Institute of Aeronautical Materials,P.O.Box 81 2 ,Beijing 150001 , China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期452-461,共10页
Therecent developments in elevated temperature ( ET) aluminum alloys prepared by therapidsolidification / powder metallurgy ( RS P/ M) process were reviewed briefly. TheRS P/ METaluminum alloyscan beclassified as(a)... Therecent developments in elevated temperature ( ET) aluminum alloys prepared by therapidsolidification / powder metallurgy ( RS P/ M) process were reviewed briefly. TheRS P/ METaluminum alloyscan beclassified as(a) the aluminum transition metaltype, such as Al Fe, Al Cr, Al Ti, Al Zrsystem alloys,etc.,and (b) thealuminum rareearth elementtype,such as Al Y, Al Nd system alloys,etc. Among them ,the Al Fe and Al Ti system alloysarethe most attractive, which possessthe potentialto replacethetitanium alloy partson aircraft,engines,etc.,fortheuseattemperaturesrangingfrom 200 315℃. Theproblemsin applicationsfor RS P/ M ETaluminum alloys werealso discussed . 展开更多
关键词 rapidsolidification / powder metallurgy elevatedtemperaturealuminum alloys dispersoids coarsening rate
下载PDF
Superior Properties of Mg–4Y–3RE–Zr Alloy Prepared by Powder Metallurgy 被引量:5
5
作者 Jirí Kubásek Drahomír Dvorsky +3 位作者 Miroslav Cavojsky Dalibor Vojtěch Nad'a Beronská Michaela Fousová 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期652-660,共9页
Magnesium alloys are important materials for application in the automotive and aviation industries. During the last few years, the number of possible applications as biodegradable implants in medicine has grown. Mg-RE... Magnesium alloys are important materials for application in the automotive and aviation industries. During the last few years, the number of possible applications as biodegradable implants in medicine has grown. Mg-RE(rare earth) alloys belong to the most advanced group of products, offering the best combination of mechanical properties and corrosion resistance. Among these materials, WE43(Mg-Y-Nd)is a very well-known commercial alloy that has been extensively studied for applications at increased temperatures and also in organisms. Although this material has been described, there are still possibilities to improve its properties and subsequently expand its applicability. Powder metallurgy has already been used for the preparation of magnesium alloys with superior mechanical properties and occasionally superior corrosion properties. Therefore, the present paper is oriented toward the preparation of Mg-4Y-3RE-Zr(WE43) alloy by the powder metallurgy technique(WE43-PM) and comparison of the final properties with the product of extrusion of as-cast ingot(WE43-IM). Our processing leads to a partial improvement in the mechanical properties and superior corrosion resistance of WE43-PM. The texture strength of WE43-PM was low, and therefore, anisotropy of mechanical properties was suppressed. 展开更多
关键词 Magnesium alloys REEs(rare earth elements) powder metallurgy Mechanical properties Corrosion
原文传递
Hot Deformation Mechanism and Ring Rolling Behavior of Powder Metallurgy Ti_2AlNb Intermetallics 被引量:6
6
作者 Zheng-Guan Lu Jie Wu +2 位作者 Rui-Peng Guo Lei Xu Rui Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第7期621-629,共9页
Powder metallurgy(PM) Ti–22Al–24Nb–0.5Mo(at.%) alloys were prepared by hot isostatic pressing. In order to study the feasibility of PM + ring rolling combined process for preparing Ti_2AlNb rings, thermal mech... Powder metallurgy(PM) Ti–22Al–24Nb–0.5Mo(at.%) alloys were prepared by hot isostatic pressing. In order to study the feasibility of PM + ring rolling combined process for preparing Ti_2AlNb rings, thermal mechanical simulation tests of PM Ti_2AlNb alloys were conducted and two rectangular PM rings(150 mm in height, 75 mm in thickness,350 mm in external diameter) were rolled as a validation experiment. Experimental results show that the flow stress of Ti_2AlNb alloys exhibited a significant drop at the very beginning of the deformation(true strain/0.1), and became stable with the increase in strain. Stress instability phenomenon of PM Ti_2AlNb alloys was more obvious than that of wrought alloy. Flow stress fluctuation at the initial stage of deformation is related to phase transition of Ti_2AlNb alloys which strongly depends on heat treatment and thermal mechanical deformation process. Processing windows during initial stage of ring rolling process is very crucial. A sound PM Ti_2AlNb rectangular ring blank(height = 150 mm, thickness = 30 mm, external diameter = 750 mm) was successfully rolled in two passes by using the improved heat preservation method and optimized rolling parameters. Tensile properties of PM Ti_2AlNb alloy were improved, and the porosity was reduced after ring rolling. 展开更多
关键词 Ti_2AlNb alloy powder metallurgy Hot deformation Ring rolling
原文传递
Characterization of Mo–Si–B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment 被引量:1
7
作者 Bin Li Guojun Zhang +3 位作者 Feng Jiang Shuai Ren Gang Liu Jun Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第10期995-1000,共6页
Mo-Si-B nanocomposite powders with a composition of Mo-12Si-8.5B (in at.%) were processed using mechanical alloying under milling conditions for different milling time and powder-to-ball ratios. The Mo-12Si-8.5B all... Mo-Si-B nanocomposite powders with a composition of Mo-12Si-8.5B (in at.%) were processed using mechanical alloying under milling conditions for different milling time and powder-to-ball ratios. The Mo-12Si-8.5B alloy, which consists of α-Mo and intermetallic Mo3Si and T2 phases, was also synthesized by hot-pressed sintering the mechanically alloyed powders under a pressure of 50 MPa at 1600 ℃. The results demonstrated that the sizes and morphologies of the powder particles became gradually refined and uniform by both increasing the milling time and decreasing the powder-to-ball ratio. After 15 h of milling, the powders were completely homogenized at the 1:10 and the 1 : 15 powder-to-ball weight ratios, and the homogenization was accelerated to rapidly stabilize the milling process because of their high milling energy. Annealing the Mo-Si-B milled powders could promote the growth of the intermetallic Mo3Si and the T2 phases, which formed even after low-temperature annealing at 900 ℃. Increasing the annealing temperature only improved the crystallinity of various phases. When the milled and annealed powders were hot-pressed sintered, the Mo-Si-B alloy exhibited a fine-grained microstructure, where the intermetallics Mo3Si and T2 were distributed in a continuous α-Mo matrix. 展开更多
关键词 Intermetallics Mechanical alloying powder metallurgy Microstructure
原文传递
Effect of Nano-sized B4C Addition on the Mechanical Properties of ZA27 Composites
8
作者 R.Dalmis H.Cuvalci +1 位作者 A.Canakci O.Guler 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期747-752,共6页
In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were de... In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were determined in terms of microstructural studies, density and porosity tests, mechanical properties were determined in terms of ultimate tensile strength(UTS) and hardness experiments. Morphological and microstructural studies were carried out with scanning electron microscopy(SEM). The experimental results indicate that nano-sized B4C can be used to enhance the mechanical properties of ZA27 alloy effectively. The highest mechanical performance can be obtained at ZA27-0.5% B4C(in weight) nanocomposite with values of tensile strength(247 MPa) and hardness(141,18 BH) and low partial porosity(0.5%). After a pick point, increasing B4C ratio may cause the formation of agglomeration in grain boundaries, that's why density, tensile strength, and hardness values are declined. 展开更多
关键词 metal matrix nanocomposite ZA27 alloy hot pressing powder metallurgy
下载PDF
In Situ Aluminum Alloy Coating on Magnesium by Hot Pressing
9
作者 Ridvan Yamanoglu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第8期1059-1064,共6页
In the present study, pure magnesium was in situ coated with pre-alloyed Al–Cu–Mg alloy through hot pressing. The produced samples were characterized by means of hardness, wear properties and microstructure characte... In the present study, pure magnesium was in situ coated with pre-alloyed Al–Cu–Mg alloy through hot pressing. The produced samples were characterized by means of hardness, wear properties and microstructure characterization. A ball-on-disk test was used to determine the dry sliding wear characteristics of the compacts. The results showed that the hot pressing technique has been successfully applied for producing magnesium parts with compatible wear resistance and hardness to aluminum. The in situ coating of Al on Mg by hot pressing resulted in an increase in hardness of about 30% compared with the pure Mg substrate. The wear rate and friction coefficient of the samples decreased with Al coating and increased with an increase in the applied load during the wear tests, compared with the uncoated material. 展开更多
关键词 Magnesium powder metallurgy Coating Al–Cu–Mg alloy Hot pressing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部