A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples w...A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.展开更多
High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density great...High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.展开更多
Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered...Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered parts were studied. Binder removal was accomplished by heating green compacts at intermediate temperatures with optimal heating rates until the debinding temperature was reached. Results show that by controlling debinding process,complex parts with good shape consistence can be obtained by warm compaction of binder-treated powder. Fine and shiny surface was obtained and no surface defect can be observed for sintered parts debinded at 2 ℃/min,while defect can be observed in sintered parts debinded at 4 ℃/min.展开更多
基金supported by National 973 Program (No.2006CB605207)MOE Program for Changjiang Scholars and Innovative Research Team in Universityof China (No.I2P407)
文摘A new method for producing higher density PM parts, high velocity compaction (HVC), was presented in the paper. Using water atomized pure iron powder without lubricant admixed as the staring material, ring samples were compacted by the technique. Scanning electron microscopy (SEM) and a computer controlled universal testing machine were used to investigate the morphologies and the mechanical properties of samples, respectively. The relationships among the impact velocity, the green density, the sintered density, the bending strength and the tensile strength were discussed, The results show that with increasing impact velocity, the green density and the bending strength increase gradually, so the sintered density does. In addition, the tensile strength of sintered material is improved continuously with the sintered density enhancing. In the study, the sintered density of 7.545 g/cm^3 and the tensile strength of 190 MPa are achieved at the optimal impact velocity of 9.8 m/s.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700503)the National High Technology Research and Development Program of China (No. 2015AA034201)+2 种基金the Beijing Science and Technology Plan (No. D161100002416001)the National Natural Science Foundation of China (No. 51172018)Kennametal Inc
文摘High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.
基金Projects(50574041, 50325516) supported by the National Natural Science Foundation of Chinaprojects(2006Z1-D6081, 06105411) supported by Guangdong Science and Technologyproject (NCET-05-0739) supported by NCET
文摘Regular elemental powders were used in warm flow compaction instead of the expensive micron-sized powders to fabricate cross-shaped parts. Debinding behaviors,sintering properties and shape consistency of the sintered parts were studied. Binder removal was accomplished by heating green compacts at intermediate temperatures with optimal heating rates until the debinding temperature was reached. Results show that by controlling debinding process,complex parts with good shape consistence can be obtained by warm compaction of binder-treated powder. Fine and shiny surface was obtained and no surface defect can be observed for sintered parts debinded at 2 ℃/min,while defect can be observed in sintered parts debinded at 4 ℃/min.