期刊文献+
共找到803篇文章
< 1 2 41 >
每页显示 20 50 100
Fast adsorption of microcystin-LR by Fe(Ⅲ)-modified powdered activated carbon
1
作者 DAI Guofei GAN Nanqin +2 位作者 SONG Lirong FANG Shaowen PENG Ningyan 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第4期1103-1111,共9页
Microcystins(MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and livestock. The removal of MCs from contaminated water with po... Microcystins(MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and livestock. The removal of MCs from contaminated water with powdered activated carbon(PAC) has been employed as a simple and economic treatment strategy. In this study, PAC-Fe(Ⅲ) was prepared and utilized for the fast and efficient removal of MCs from water. PAC-Fe(Ⅲ) exhibited superior microcystin-LR(MC-LR) removal capacity and efficiency compared to the unmodified PAC. The MC-LR removal efficiency of PAC-Fe(Ⅲ) increased with decreasing p H within the pH range of 4.3 to 9.6. PAC-Fe(Ⅲ) could be reused for 3 times by methanol elution while the MC-LR removal efficiency was still over 70 percent. The removal efficiency was positively correlated to the ionic strength of water and negatively correlated to alkalinity. Natural organic matter(NOM) such as humic acid(HA) and salicylic acid(SA) generated low interference with MC-LR adsorption by PAC-Fe(Ⅲ). The complexation reaction between Fe^(3+) in PAC-Fe(Ⅲ) and the functional groups of MCLR was suggested as the key mechanism of MC-LR removal by PAC-Fe(Ⅲ). The results suggest that Femodified PAC is a promising material for the treatment of MC-contaminated waters. 展开更多
关键词 microcystin (MC) Fe powdered activated carbon (pac microcystin removal
下载PDF
Effect of powdered activated carbon on Chinese traditional medicine wastewater treatment in submerged membrane bioreactor with electronic control backwashing 被引量:8
2
作者 LIU Xiao-lei REN Nan-qi MA Fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1037-1042,共6页
Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) o... Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR. 展开更多
关键词 electronic control backwashing powdered activated carbon membrane bioreactor aerobic process wastewater treatment
下载PDF
Evaluation of Powdered Activated Carbon Treatment Process in Petrochemical Wastewater Purification 被引量:2
3
作者 Zhang Chao Yang Lin +2 位作者 Sang Junqiang Li Bengao Liu Tao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第4期67-74,共8页
The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit ... The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit launched in a petrochemical plant was introduced and evaluated from both the practice and mechanism study. Practically, the PACT process showed excellent capability in pollutants removal, shock resistance, toxicity tolerance, and the COD and ammoniumN in effluent of PACT unit assisted by PAC was equal to 15.5 mg/L and 0.7 mg/L lower than that without PAC addition,respectively. The wet oxidation regeneration unit was quite efficient in supplying regenerated PAC, and, however, the hard calcium sulphate scale and the high pollutant concentration solution needed to be carefully controlled. Moreover, although the carbon balance showed that the adsorption capability of regenerated PAC was negligible, the biological tests proved that the regenerated PAC increased microbe activity up to 17% more than pure activated sludge system, which was almost compatible with the fresh activated carbon. 展开更多
关键词 powdered activated carbon treatment PETROCHEMICAL WASTEWATER ADSORPTION MICROBE activity
下载PDF
Study on Regeneration of Powdered Activated Carbon by Electron Beam
4
作者 WU Ming-hong, BAO Bo-rong, CHEN Jie, LU Li-rong Shanghai Applied Radiation Institute Shanghai University, Shanghai 201800, China 《Advances in Manufacturing》 SCIE CAS 2000年第S1期165-168,共4页
The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectiv... The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum. 展开更多
关键词 powdered activated carbon REGENERATION iodine number
下载PDF
Adsorption Characteristics of the Powdered Activated Carbon on Pesticide in the Water
5
作者 Pan Zhangbin Song Wuchang +2 位作者 Feng Guixue Jia Ruibao Sun Shaohua 《Meteorological and Environmental Research》 CAS 2014年第12期53-56,共4页
The adsorption characteristics of the powdered activated carbon on four kinds of pesticides ( dichlorvos, chlorothalonil, lindane and chlorphyrifos) were studied, and the influential factors of adsorption effect wer... The adsorption characteristics of the powdered activated carbon on four kinds of pesticides ( dichlorvos, chlorothalonil, lindane and chlorphyrifos) were studied, and the influential factors of adsorption effect were discussed. Results showed that the powdered activated carbon could effectively remove the above four kinds of pesticides. It was rapid adsorption period before 30 min, and removal rate has reached 90%. Adsorption kinetics of the powdered activated carbon on pesticides corresponded with quasi-two-level kinetic equation, and both Freundlich and Langmuir adsorption isotherms could simulate the adsorption process of the activated carbon on pesticide well. Competitive adsorption between small-molecule organics in the water diverting from Yellow River and Desticides on microDore of the activated carbon would occur. 展开更多
关键词 PESTICIDE The powdered activated carbon ADSORPTION Natural organics Competitive adsorption China
下载PDF
Distribution of Colloidal and Powdered Activated Carbon for the <i>in Situ</i>Treatment of Groundwater
6
作者 Rick McGregor 《Journal of Water Resource and Protection》 2020年第12期1001-1018,共18页
The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, ana... The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, anaerobic and aerobic bioremediation, and adsorption, among others. One requirement for the successful application of these technologies is the delivery of the remedial reagent(s) to the compounds of concern. A rapidly evolving <em>in situ</em> technology is the injection of adsorptive media such as activated carbon and ion-exchange resin including powdered or colloidal activated carbon. Activated carbon has a long-demonstrated history of effectiveness for the removal of various organic and inorganic compounds in above ground water treatment systems. However, due to constraints related to the particle size and physical properties of the activated carbon, the <em>in situ</em> application of activated carbon has been limited. Recent developments in the manufacturing of activated carbon have created a smaller particle size allowing activated carbon to be applied <em>in situ</em>. To evaluate if powdered and colloidal activated carbon can be effectively distributed in aquifers, the two types of carbon were injected using direct push technology adjacent to each other at four sites with varying geology. Evaluation of distribution was completed by sampling the aquifer prior to and post-injection for total organic carbon. The results of the studies indicated that both forms of activated carbon were effectively delivered to the targeted injection zones with both carbon types being detected at least seven meters away from the point of injection. The colloidal form of the activated carbon showed good distribution throughout the four targeted zones of injection with 93 percent of the samples collected having colloidal activated carbon present within them whereas the powdered activated carbon cells were more susceptible to aquifer heterogeneity with only 67 percent of the samples collected having activated carbon present. Preferential accumulation of activated carbon was observed in high horizontal hydraulic conductivity seams, especially within the powdered activated carbon cells. These results suggested that the powdered form of activated carbon was more suspectable at the four sites to heterogeneity within the aquifer than the colloidal form of activated carbon. Sampling of monitoring well screens installed prior to the injection of the two forms of activated carbon showed preferential accumulation of powdered activated carbon within the sand pack, which could result in sampling bias. 展开更多
关键词 In situ Remediation GROUNDWATER COLLOIDAL powdered activated carbon
下载PDF
Aluminum and Activated Alumina Powder Additions on Microwave Synthesis of Al_(4)SiC_(4)
7
作者 WANG Li LIU Shijie +6 位作者 WEI Haoyu MA Juanjuan DONG Binbin GENG Shangrui YAN Miaoxin QIN Feng GUO Yusen 《China's Refractories》 CAS 2024年第1期44-48,共5页
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat... Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance. 展开更多
关键词 aluminum powder activated alumina powder microwave synthesis Al_(4)SiC_(4) magnesia carbon bricks
下载PDF
Ultrafiltration Enhanced with Activated Carbon Adsorption for Efficient Dye Removal from Aqueous Solution 被引量:7
8
作者 董亚楠 苏延磊 +3 位作者 陈文娟 彭金明 张岩 姜忠义 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第5期863-869,共7页
In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited on... In this study, orange G dye was efficiently removed from aqueous solution by ultraflltration (UF) membrane separation enhanced with activated carbon adsorption. The powdered activated carbon (PAC) was deposited onto the UF membrane surface, forming an intact filter cake. The enhanced UF process simultaneously exploited the high water permeation flux of porous membrane and the high adsorption ability of PAC toward dye molecules. The influencing factors on the dye removal were investigated. The results indicated that with sufficient PAC incorporation, the formation of intact PAC filtration cake led to nearly complete rejection for dye solution under opti-mized dye concentration and operation pressure, without large sacnticlng the permeation tlux ot the filtration process. Typically, the dye rejection ratio increased from 43.6% for single UF without adsorption to nearly 100% for the enhanced UF process, achieving long time continuous treatment with water permeation flux of 47 L·m^-2·h^-1. The present study demonstrated that adsorption enhanced UF may be a feasible method for the dye wastewater treatment. 展开更多
关键词 enhanced ultrafiltration powdered activated carbon filter cake ADSORPTION -dye removal
下载PDF
Enhanced Adsorption of Pb(II) Ions from Aqueous Solution by Persimmon Tannin-activated Carbon Composites 被引量:3
9
作者 王勇 王富忠 +4 位作者 WAN Tao CHENG Shunlin XU Guoqing CAO Rui GAO Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期650-657,共8页
The modification of activated carbon with persimmon tannin and its application for the removal of Pb(II) ions were carried out by batch method. The effects of solution pH, contact time, temperature and initial conce... The modification of activated carbon with persimmon tannin and its application for the removal of Pb(II) ions were carried out by batch method. The effects of solution pH, contact time, temperature and initial concentration on the immobilization of persimmon tannin were studied. The experimental results showed that the experimental data of persimmon tannin and Pb(II) fitted better by Langrnuir adsorption isotherm model and pseudo-second order model. The adsorption capacities of adsorbents for persimmon tannin and Pb(II) were calculated from the Langmuir isotherm model, and found to be 42.97 and 12.40 mg/g at optimum pH, respectively. It was noted that the adsorbent exhibited the best adsorption property for Pb(lI) when 1.0 g activated carbon was modified by 17.32 mg persimmon tannin. The modified activated carbon is more effective than the plain activated carbon, and it is expected to be an economic and effective adsorbent for the disposal of wastewater containing Pb(II) ions. 展开更多
关键词 ADSORPTION persimmon tannin IMMOBILIZATION lead powdered activated carbon
下载PDF
Mechanical Property and Microstructure of Cement Mortar with Carbonated Recycled Powder
10
作者 丁亚红 张美香 +3 位作者 YANG Xiaolin XU Ping SUN Bo GUO Shuqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期689-697,共9页
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon... Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect. 展开更多
关键词 recycled powder carbonation activation compound carbonation activity index mechanical property MICROSTRUCTURE
下载PDF
Adsorption of residual amine collector HAY from aqueous solution by refined carbon from coal fly ash and activated carbon 被引量:2
11
作者 李显波 叶军建 +4 位作者 邱跃琴 李龙江 卯松 刘志红 张覃 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期30-38,共9页
Refined carbon(RC) derived from coal fly ash(CFA) as well as powdered activated carbon(PAC) was investigated as adsorbent to remove residual amine collector HAY from aqueous solution.The RC and PAC were characterized ... Refined carbon(RC) derived from coal fly ash(CFA) as well as powdered activated carbon(PAC) was investigated as adsorbent to remove residual amine collector HAY from aqueous solution.The RC and PAC were characterized by scanning electron microscopy(SEM),surface area measurement,Zeta potential measurement and Fourier transform infrared(FTIR) spectroscopy.The effect factors and mechanisms of HAY adsorption onto RC and PAC were studied in detail.The results show that the experimental kinetic data agree well with the pseudo second-order equation,and the Langmuir isotherm model is found to be more appropriate to explicate the experimental equilibrium isotherm results than the Freundlich model.The adsorption capacities of PAC and RC increase with pH.It is found that alkaline condition is conducive to the adsorption of HAY onto PAC and RC and the adsorption efficiency of RC is close to PAC at pH near 11.Zeta potential variation of adsorbents suggests that HAY generates electrostatic adsorption onto RC and PAC.FTIR analysis shows that the adsorption is dominantly of a physical process.The Box-Behnken design optimization conditions of process are RC 1 g/L,pH 11,temperature 302 K and initial HAY concentration 100 mg/L.Under these conditions,the measured adsorption ratio and adsorption capacity are 87.91%and 87.91 mg/g,respectively.Thus,the RC is considered to be a potential adsorbent for the removal of residual amine from aqueous solution. 展开更多
关键词 powdered activated carbon coal fly ash refined carbon ADSORPTION amine collector HAY
下载PDF
Pilot Study on Powder Active Carbon / Flotation/Microflocculation / Ultrafiltration Combined Process for Treatment of Reservoir Water
12
作者 Wuchang Song Mantun Li +2 位作者 Xiaoliang Yang Ruibao Jia Shaohua Sun 《Meteorological and Environmental Research》 CAS 2013年第12期57-60,共4页
[Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a ... [Objective] The study aimed to discover the effects of powder active carbon( PAC) /flotation /micro-flocculation /ultrafiltration combined process on the treatment of reservoir water. [Method]Taken the water from a mountainous reservoir for the initial samples,the parameters such as turbidity,COD Mn,chlorophyll-a and methylisobormeol( MIB) of water samples were monitored before and after treated with combined processes of micro-flocculation /ultrafiltration, flotation /micro-flocculation /ultrafiltration, PAC /flotation /micro-flocculation /ultrafiltration. [Result] The results showed that the removal rates of turbidity of water samples by the above three processes were 97. 5%,98. 0% and 98. 6%,respectively. The removal rates of COD Mn were 30. 9%,35. 0% and 52. 0%. The removal rates of chlorophyll-a were 80. 6%,91. 0% and 99. 0%. The removal rates of MIB were 17. 0%,34. 2% and 97. 0%. [Conclusion]The PAC /flotation /micro-flocculation ultrafiltration combined process can be flexibly combined based on the characteristics of algae and odor in water,and is suitable for water plant construction or reconstruction. 展开更多
关键词 ULTRAFILTRATION FLOTATION MICRO-FLOCCULATION powder active carbon China
下载PDF
Uptake of copper ion by activated sludge and its bacterial community variation analyzed by 16S rDNA 被引量:9
13
作者 XIEBing KANGKyoung-Soon 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第3期328-333,共6页
The effect and uptake of copper ion on SBR(sequence batch reactor) biological treatment system was studied. Special nutrient and powder activated carbon(PAC) additive were tested as uptake stimulation technique. Resul... The effect and uptake of copper ion on SBR(sequence batch reactor) biological treatment system was studied. Special nutrient and powder activated carbon(PAC) additive were tested as uptake stimulation technique. Results showed that copper ion had higher effect on unacclimated activated sludge system than on acclimated one. The special nutrient adding could enhance the uptake of copper significantly, while PAC adding could improve the sludge settling and decrease the turbidity of effluent. The variation of bacterial community analyzed by 16S rDNA method showed the acclimation of copper could increase copper resistance species, and excess accumulation could cause some species diminish. It was confirmed that acclimation could improve the resistance and uptake ability of microorganism to heavy metal. 展开更多
关键词 copper ion UPTAKE NUTRIENTS powder activated carbon (pac) 16S rDNA length polymorphism (LPM)
下载PDF
Activation mechanisms on potassium hydroxide enhanced microstructures development of coke powder 被引量:2
14
作者 Xiaojing Chen Huirong Zhang +2 位作者 Yanxia Guo Yan Cao Fangqin Cheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期299-306,共8页
Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activ... Coke powder is expected to be an excellent raw material to produce activated carbon because of its high carbon content. Potassium hydroxide(KOH), as an effective activation agent, was reported to be effective in activating coke powder. However, the microstructures development in the coke powder and its mechanisms when KOH was applied were still unclear. In this study, effects of KOH on the microstructure activation of coke powder were investigated using the surface area and pore structure analyzer, scanning electron microscope(SEM) and thermogravimetry-differential scanning calorimetry-mass spectrometry(TG-DSC-MS), etc. Results revealed that the addition KOH at its lower ratio(mass ratios of KOH and coke powder in a range of 0.5 and 1) decreased the specific surface area and average lateral sizes, but sharply increased of the specific surface area to 132 m^2·g^-1 and 355 m^2·g^-1 and decreased of the space size of aromatic crystallites upon the further increase of the KOH addition amounts(ratios of KOH and coke powder in a range of 3 and 7), generating a number of new micropores and mesopores. The mechanisms study implied surface reactions between KOH and aliphatic hydrocarbon side chain and other carbon functional groups of the coke powder to destruct aromatic crystallites in one dimension and broaden pores at lower KOH addition. In the activation process, KOH was decomposed to be more active components, which can be rapidly destruct the aromatic layers in spatial scope to form developed porous carbon structures within coke powder at higher KOH addition. 展开更多
关键词 activated carbon COKE powder activation Structure POTASSIUM HYDROXIDE
下载PDF
STUDY ON THE EROSION RATE OF POWDERED ACTIVATED CARBON IN RAW WATER AQUEDUCT
15
作者 YIN Hai-long YANG Yang XU Zu-xin ' 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第3期442-449,共8页
Growing interest in using Powdered Activated Carbon (PAC) in raw water aqueduct, as a method of polluted surface water treatment, raises the question of transport of PAC in the aqueduct, which is related to the pote... Growing interest in using Powdered Activated Carbon (PAC) in raw water aqueduct, as a method of polluted surface water treatment, raises the question of transport of PAC in the aqueduct, which is related to the potential PAC erosion along the aqueduct. By means of a recently developed re-circulating flume, erosion rates of PAC with the grain size of 230 meshes (less than 62μm) depending on shear stress and bulk density were the discussed with real-time measurement of suspended PAC concentration. Lateral cross sectional averaging shear stress was decided by the actual value in the raw water conveying aqueduct of upstream Huangpu River, Shanghai, China, smaller than 1.8 N'm 2. As for the bulk density, it was measured with compacting times varying from 1 d to 15 d, equivalent to 1 550 kg/m3-1 800 kg/m3. Experiments were conducted for the shear stress and bulk density separately, so as to isolate and quantify the effects of one of the parameters. The results demonstrate that, for a particular PAC particle, the erosion rate increases with shear stress and decreases with bulk density as a function of power form. A product of powers of the lateral cross sectional averaging shear stress and bulk density to estimate PAC erosion rate is presented by approximating experimental data sets. 展开更多
关键词 powdered activated carbon (pac raw water aqueduct erosion rate shear stress bulk density
原文传递
Study on transport of powdered activated carbon using a rotating circular flume
16
作者 尹海龙 邱敏燕 徐祖信 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第5期772-777,共6页
This study employed a rotating flume to examine the Powdered Activated Carbon (PAC) transport with water flow. The initial PAC concentration was 10 mg/L-30 mg/L, and PAC concentration versus time under a specified c... This study employed a rotating flume to examine the Powdered Activated Carbon (PAC) transport with water flow. The initial PAC concentration was 10 mg/L-30 mg/L, and PAC concentration versus time under a specified cross-sectional averaging fluid shear was observed. Results show that compared with PAC deposition in still water, PAC is depleted to zero faster under a fluid shear of 0.02 Pa, due to PAC agglomeration with the fluid shear. However, since PAC floc size only ranges from a single particle (2 μm) to approximate 6 μm, an increasing of instantaneous turbulent fluctuations could counteract the force of PAC floc settling downward, and as a result the steady PAC concentration increases with the increase of shear stress. It is found that the critical shear stress for PAC deposition is about 0.60 Pa, and further the PAC deposition probability is presented according to the experimental scenarios between 0.02 Pa and 0.60 Pa. Combining the PAC transport and deposition formula with PAC-pollutant removal model provides an insight into PAC deployment in raw water aqueduct for sudden open water source pollution. 展开更多
关键词 cohesive sediment powdered activated carbon (pac TRANSPORT DEPOSITION
原文传递
PAC更新率对PAC-MBR耦合处理效能及污泥特性的影响
17
作者 张事 张忠义 +1 位作者 鄢琨 徐望朋 《净水技术》 CAS 2024年第3期81-91,共11页
粉末活性炭(PAC)的定期回收和补充是混合膜生物反应器(PAC-MBR)稳定运行所必需的。研究探索了不同PAC更新率对PAC-MBR中污泥过滤特性和微生物群落的影响,创新性地提出通过PAC更新来提高微生物活性,以达到提高出水效能并减缓膜污染的效... 粉末活性炭(PAC)的定期回收和补充是混合膜生物反应器(PAC-MBR)稳定运行所必需的。研究探索了不同PAC更新率对PAC-MBR中污泥过滤特性和微生物群落的影响,创新性地提出通过PAC更新来提高微生物活性,以达到提高出水效能并减缓膜污染的效果。结果表明:PAC更新对CODCr和氮的去除没有显著影响;随着PAC更新率的增加,可溶性微生物产物逐渐降低,胞外聚合物浓度逐渐增加。PAC的更新能够降低MBR系统膜污染,同时提高过滤效率。微生物活性与PAC的更新率呈正相关规律。此外,由高通量测序可知由于添加新鲜的PAC,Proteobacteria(变形菌属)、Bacteroidetes(拟杆菌属)及Nitrospira(硝化螺旋菌属)的丰度增加,保证污染物的去除,同时Proteobacteria及Bacteroidetes造成的膜污染减少。最佳PAC更新率为1.67%,能够有效缓解膜污染并增强优势细菌结构。在推动PAC-MBR广泛应用方面,PAC更新被认为是一种有前景的方法。 展开更多
关键词 粉末活性炭(pac) 膜生物反应器 粉末活性炭更新 膜污染 微生物代谢产物 微生物群落
下载PDF
Dynamic membrane bioreactor performance enhancement by powdered activated carbon addition:Evaluation of sludge morphological,aggregative and microbial properties 被引量:11
18
作者 Zhenzhen Yu Yisong Hu +2 位作者 Mawuli Dzakpasu Xiaochang C.Wang Huu Hao Ngo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第1期73-83,共11页
The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pol... The effects of powdered activated carbon(PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor(DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane(DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes(protists and metazoans)and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC(BPAC), which promoted the enrichment of Acinetobacter(13.9%), Comamonas(2.9%), Flavobacterium(0.31%) and Pseudomonas(0.62%), all contributing to sludge flocs formation and several(such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance. 展开更多
关键词 Dynamic membrane BIOREACTOR powdered activated carbon SLUDGE property FILTRATION performance WASTEWATER treatment MICROBIAL community
原文传递
Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon 被引量:8
19
作者 Runmiao Xue Ariel Donovan +7 位作者 Haiting Zhang Yinfa Ma Craig Adams John Yang Bin Hua Enos Inniss Todd Eichholz Honglan Shi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第2期82-91,共10页
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may ... When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products(DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine(NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes.The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon(PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than67% ammonia and 70%–100% N-nitrosamine precursors were removed by Mordenite zeolite(except 3-(dimethylaminomethyl)indole(DMAI) and 4-dimethylaminoantipyrine(DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors(dimethylamine(DMA), ethylmethylamine(EMA), diethylamine(DEA), dipropylamine(DPA), trimethylamine(TMA), DMAP, and DMAI) during the alum coagulation process. 展开更多
关键词 Disinfection by-products Drinking water treatment Ammonia removal by zeolite N-nitrosodimethylamine(NDMA) N-NITROSAMINES N-nitrosamine precursor removal by zeolite and powdered activated carbon
原文传递
Removal of bromate ion using powdered activated carbon 被引量:3
20
作者 Lian Wang Jie Zhang +5 位作者 Jingze Liu Hong He Min Yang Jianwei Yu Zichuan Ma Feng Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第12期1846-1853,共8页
Bromate ion (BrO3-) removal from drinking water by powdered activated carbons (PACs) in bath mode was evaluated under various operational conditions. Six kinds of PACs, including wood-based carbon, fruit-based car... Bromate ion (BrO3-) removal from drinking water by powdered activated carbons (PACs) in bath mode was evaluated under various operational conditions. Six kinds of PACs, including wood-based carbon, fruit-based carbon, coal-based carbon, and these three carbons thermally deoxidized in a nitrogen atmosphere, were selected to investigate their capacity on BrO3- removal. With the highest zeta potential value and being richly mesoporous, coal-based carbon had a high and an excellent BrO3- adsorption efficiency. The removal content of BrO3- by per gram of coal-based carbon was 0.45 mg within 5 hr in 100 μg/L bromate solution. The surface characteristics of PACs and bromide formation revealed that both physical and chemical PACs properties simultaneously affected the adsorptionreduction process. Under acidic conditions, PACs possessed high zeta value and adequate basic groups and exhibited neutral or positive charges, promoting BrO3- adsorption-reduction on the carbon surface. Interestingly, the PACs thermally deoxidized in N2 atmosphere optimized their properties, e.g. increasing their zeta values and decreasing the oxygen content which accelerated the BrO3- removal rate. The maximum adsorption capacity of fruit-based carbon was the highest among all tested carbons (99.6 mg/g), possibly due to its highest pore volume. Remarkably, the thermal regeneration of PACs in N2 atmosphere could completely recover the adsorption capacity of PACs. The kinetic data obtained from carbons was analyzed using pseudo second-order and intraparticle diffusion models, with results showing that the intraparticle diffusion was the more applicable model to describe adsorption of BrO3- onto PACs. 展开更多
关键词 BROMATE powdered activated carbons adsorption-reduction process adsorption capacity
原文传递
上一页 1 2 41 下一页 到第
使用帮助 返回顶部