The precursor prepared by coordinated co-precipitation was direct reduced by hydrogen to ultra-fine fibrous Fe-Ni alloy powder. The effects of concentrations of reactants, pH value, reaction temperature and additive o...The precursor prepared by coordinated co-precipitation was direct reduced by hydrogen to ultra-fine fibrous Fe-Ni alloy powder. The effects of concentrations of reactants, pH value, reaction temperature and additive on the preparation of precursor were systematically investigated. The structures, thermal decomposition processes and morphologies of the precursors were characterized by X-ray diffraction (XRD), thermal gravity-differential thermal analysis (TG-DTA) and scanning electron microscoy (SEM). The results show that using 2% polyvinylpyrrolidone (PVP) (in mass fraction) as additive, a well-dispersed precursor with a uniform morphology can be obtained in a solution with Fe2+ and Ni2+ total concentration (1:1) of 0.8 mol/L, pH value of 6.2 at 60 °C, and a pure and well dispersed fibrous iron-nickel powder can be prepared by direct reduction of this precursor in a mixed atmosphere of nitrogen and hydrogen at the temperature of 420 °C.展开更多
A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ra...A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.展开更多
Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated b...Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.展开更多
Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fati...Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fatigue failure.In this paper,an experimental investigation of fatigue microcrack propagation in the vicinal inclusion were carried out by the servo-hydraulic fatigue test system with scanning electron microscope(SEM).It has been found from the SEM images that the fatigue surface microcrack occurs in the matrix and inclusion.According to the SEM images,the characteristics of fatigue crack initiation and growth in vicinal inclusion for powder metallurgy alloys are analyzed in detail.The effect of the geometrical shape and material type of surface inclusions on the cracking is also discussed with the finite element method(FEM).展开更多
This paper aims to develop a surface modification process to improve the surface properties of the middle trough.The coatings were prepared by plasma cladding with Fe-Cr-B-Si-based alloy powders (Ig 6 and Ig7).The org...This paper aims to develop a surface modification process to improve the surface properties of the middle trough.The coatings were prepared by plasma cladding with Fe-Cr-B-Si-based alloy powders (Ig 6 and Ig7).The organizational structure and micro-hardness of the coatings were analyzed by laboratory equipments.The friction and wear tests were performed to investigate the friction-wear properties of middle trough.The coatings have higher hardness and good friction-wear properties than the substrate.The hardness and friction wear properties of the coating with Ig7 powder are better than those with Ig6 powder.The experimental results show that the surface properties of the middle trough are improved by Fe-Cr-B-Si-based alloy coating,which can improve the middle trough service life.The plasma cladding can be widely used in the surface-modification of middle trough to reduce the waste of resources.展开更多
A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the all...A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.展开更多
TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown t...TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.展开更多
The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffract...The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffractometer and hardness tester.The results show that the particle size does not decrease with milling time because serious welding occurs at 144 h.The density of the alloy sintered at 1 523 K is affected by the particle size of the powder.Finer particles lead to a high sintered density,while the bulk density by using particles milled for 144 h is as low as 70%.In the microstructures of the annealed alloy,large elongated particles and fine equiaxed grains can be detected.The elongated particle zone has a higher microhardness than the equiaxed grain area in the annealed alloys due to the larger residual strain and higher density of the precipitated phase.展开更多
7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 hea...7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.展开更多
Nickel-cobalt(Ni-Co) alloy powders were produced galvanostatically by using sulphate electrolytes with various ratios of Ni2+/Co2+(mole ratios). The morphology, phase structure, chemical composition and magnetic prope...Nickel-cobalt(Ni-Co) alloy powders were produced galvanostatically by using sulphate electrolytes with various ratios of Ni2+/Co2+(mole ratios). The morphology, phase structure, chemical composition and magnetic properties were examined by scanning electron microscope(SEM), X-ray diffractometer(XRD), atomic emission spectrometer(AES), and SQUID-based magnetometer, respectively. Morphology of the particles changed from cauliflower-like and dendritic to coral-like and spongy-like ones with increasing Ni2+/Co2+ ratio from 0.25 to 4.0. XRD analysis of the Ni-Co powders revealed that the decrease of Ni2+/Co2+ ratios(the increase of Co content) caused a change of structure from face centered cubic(FCC) obtained for the ratios of 4.0, 1.5 and 0.67 to a mixture of FCC and hexagonal closed-packed(HCP) phases for the ratio of 0.25. The increasing content of nickel led to change of mechanism of electrolysis from irregular(up to 40 wt.% Ni in the electrolytes) to close to equilibrium(between 40 and 60 wt.% Ni in the electrolytes) and anomalous co-deposition(over 60 wt.% Ni in the electrolytes) type. All of the obtained Ni-Co alloy samples behaved as soft magnetic materials while their magnetic parameters showed immediate composition dependence since both coercivity and saturation magnetization almost linearly increased with increase of the Co content.展开更多
Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and ni...Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and nickel matrix are combined well in the sheet. It can be used to prepare the observation specimen for TEM and determine the hardness of single powder particle as solidified and after heat-treated. The advantages of this method are the realization of heat treatment of powders and the TEM observation of non-interfered microstructure of powders in the size of several microns.展开更多
This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was c...This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.展开更多
Therecent developments in elevated temperature ( ET) aluminum alloys prepared by therapidsolidification / powder metallurgy ( RS P/ M) process were reviewed briefly. TheRS P/ METaluminum alloyscan beclassified as(a)...Therecent developments in elevated temperature ( ET) aluminum alloys prepared by therapidsolidification / powder metallurgy ( RS P/ M) process were reviewed briefly. TheRS P/ METaluminum alloyscan beclassified as(a) the aluminum transition metaltype, such as Al Fe, Al Cr, Al Ti, Al Zrsystem alloys,etc.,and (b) thealuminum rareearth elementtype,such as Al Y, Al Nd system alloys,etc. Among them ,the Al Fe and Al Ti system alloysarethe most attractive, which possessthe potentialto replacethetitanium alloy partson aircraft,engines,etc.,fortheuseattemperaturesrangingfrom 200 315℃. Theproblemsin applicationsfor RS P/ M ETaluminum alloys werealso discussed .展开更多
The powders of pure Al, Fe, and Zr for preparing Al78Fe20Zr2 were subject to a high-energy planetary ball milling.The microstructure evolution of the mixtures at the different intervals of milling was characterized by...The powders of pure Al, Fe, and Zr for preparing Al78Fe20Zr2 were subject to a high-energy planetary ball milling.The microstructure evolution of the mixtures at the different intervals of milling was characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC).It was found that a nearly complete amorphization could be achieved in the mixtures after ball milling for 23 h.Further ball milling led to the crystallization of the amorphous powders.A long time ball milling, e.g., 160 h, led to a complete crystallization of the amorphous powders and the formation of Al3Zr and Al13Fe4.The crystallization products caused by ball milling are almost the same as that produced by isothermal annealing of the amorphous powders in vacuum at 800 K for 1 h.展开更多
A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneousl...A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.展开更多
Al-4.9 Fe-4.9 Ni alloy powders have been synthesized by mechanical alloying. The rnechanically alloyed powders are consolidated by hot hydrostatic extrusion. The results show that extrusion tempereture. extrusion rati...Al-4.9 Fe-4.9 Ni alloy powders have been synthesized by mechanical alloying. The rnechanically alloyed powders are consolidated by hot hydrostatic extrusion. The results show that extrusion tempereture. extrusion ratio and lubricant have great effects on the quality of extruded rods and their mechanical properties, The mixture of graphite and glass powders as lubricant can prevent the oxidization of cold compacted billet by cladding the billet with this lubricant before heating. This technique greatly simplifies the conventional densification process of powders展开更多
The brown metallic luster La-Ni alloy powders were prepared by potentiostatic electrolysis technique in dimethylsulfoxide solution at room temperature. The atomic rate of La and Ni in alloy powders are 11∶1 and 10∶1...The brown metallic luster La-Ni alloy powders were prepared by potentiostatic electrolysis technique in dimethylsulfoxide solution at room temperature. The atomic rate of La and Ni in alloy powders are 11∶1 and 10∶1. The size of metal grains is about 0.1 to 100 μm. It shows that the micrometer powders of rare earth alloys can be obtained by controlling electrodeposition conditions. The peak potentials of -2.81 and 1.75 V are attributed to reduction of La 3+ and Ni 3+ ions, respectively. The peak potentials at -2.20 and -0.168 V are the oxidation peaks of lanthanum and nickel, respectively. When potential is more negative than -1.74 V, La(Ⅲ) and Ni(Ⅱ) will codeposit. Increasing cyclic times, the value of peak current is decreasing, and the reduction peak of La(Ⅲ) was finally disappeared.展开更多
Observations of microstructure of explosive compacts made of Al or Al-Li alloy powders by atomization with water,nitrogen or ultrasoic Ar gas were carried out under optical and scanning electron microscopes.The rsults...Observations of microstructure of explosive compacts made of Al or Al-Li alloy powders by atomization with water,nitrogen or ultrasoic Ar gas were carried out under optical and scanning electron microscopes.The rsults indicate that super quality explosive compact can only be obtained by powders of which the thickness of the oxide layer is less than 30 nm.展开更多
2024 Aluminum alloy powder( 60wt%) and Fe-based amorphous powder( 40 wt%) were adopted. They were mechanical machined for 48hours after being mixed. Bulk material was gained after Spark Plasma Sintering. The sintering...2024 Aluminum alloy powder( 60wt%) and Fe-based amorphous powder( 40 wt%) were adopted. They were mechanical machined for 48hours after being mixed. Bulk material was gained after Spark Plasma Sintering. The sintering parameters included sintering temperature,heating or cooling rates,pressure and holding time. 300 ℃- 800 ℃ were adopted while the heating or cooling rate was 100 ℃ / min and with the pressure of 50 MPa in the experiments. The holding time was 10 min or 20 min at different temperatures, respectively. Bulk materials after sintering were examined by Scanning Electron Microscopy and X-Ray Diffraction. The micro-hardness and relative density also were tested. The sintering temperature had the most significant influence on the microstructure and property of the bulk material. The influence of holding time came second while the heating or cooling rates and pressure were fixed. The density became larger with the increase of the temperature. The compactness was best at 500℃. The pressure and generation of high-temperature phases were the factors which affected the density and the compactness.展开更多
The ultrafine alloy powders,CuRh,γ-Ni_(0.33)Fe_(0.66) and α-Fe_(0.66)Co_(0.33) of size less than 35 nm were prepared by reduction of complex metallic oxides under atmosphere of 15% H_2 and 85%Ar.
基金Project (20090162120080) supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject (2010FJ3011)supported by the Program of Science and Technology of Hunan Province, ChinaProject supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, China
文摘The precursor prepared by coordinated co-precipitation was direct reduced by hydrogen to ultra-fine fibrous Fe-Ni alloy powder. The effects of concentrations of reactants, pH value, reaction temperature and additive on the preparation of precursor were systematically investigated. The structures, thermal decomposition processes and morphologies of the precursors were characterized by X-ray diffraction (XRD), thermal gravity-differential thermal analysis (TG-DTA) and scanning electron microscoy (SEM). The results show that using 2% polyvinylpyrrolidone (PVP) (in mass fraction) as additive, a well-dispersed precursor with a uniform morphology can be obtained in a solution with Fe2+ and Ni2+ total concentration (1:1) of 0.8 mol/L, pH value of 6.2 at 60 °C, and a pure and well dispersed fibrous iron-nickel powder can be prepared by direct reduction of this precursor in a mixed atmosphere of nitrogen and hydrogen at the temperature of 420 °C.
基金Project (20090162120080) supported by Doctoral Fund of Ministry of Education, ChinaProject (20070410989) supported by China Postdoctoral Science FoundationProject(748310000) supported by Central South University Science Foundation for Youths, China
文摘A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.
文摘Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.
文摘Inclusion flaw is one of the worst flaws of powder metallurgy.The inclusion flaw plays an important role in the failure of high temperature turbine materials in aircraft components and automotive parts,especially fatigue failure.In this paper,an experimental investigation of fatigue microcrack propagation in the vicinal inclusion were carried out by the servo-hydraulic fatigue test system with scanning electron microscope(SEM).It has been found from the SEM images that the fatigue surface microcrack occurs in the matrix and inclusion.According to the SEM images,the characteristics of fatigue crack initiation and growth in vicinal inclusion for powder metallurgy alloys are analyzed in detail.The effect of the geometrical shape and material type of surface inclusions on the cracking is also discussed with the finite element method(FEM).
基金Funded by the NSFC-Shanxi Coal Based Low Carbon Joint Fund Focused on Supporting Project(No.U1510205)Shandong Province Key Laboratory of Mine Mechanical Engineering(No.2019KLMM210)Key Research and Development(R&D)Projects of Shanxi Province(No.201903D121065)。
文摘This paper aims to develop a surface modification process to improve the surface properties of the middle trough.The coatings were prepared by plasma cladding with Fe-Cr-B-Si-based alloy powders (Ig 6 and Ig7).The organizational structure and micro-hardness of the coatings were analyzed by laboratory equipments.The friction and wear tests were performed to investigate the friction-wear properties of middle trough.The coatings have higher hardness and good friction-wear properties than the substrate.The hardness and friction wear properties of the coating with Ig7 powder are better than those with Ig6 powder.The experimental results show that the surface properties of the middle trough are improved by Fe-Cr-B-Si-based alloy coating,which can improve the middle trough service life.The plasma cladding can be widely used in the surface-modification of middle trough to reduce the waste of resources.
基金This work has been supported by the Flu,tda~ion Of harbin institute of Technology for Out standing YOungScientists (No. 1832).
文摘A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.
基金the National Natural Science Foundation of China (Project 59895150) and the National Advanced Materials Committee (Project 7
文摘TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.
基金Project(50634060) supported by the National Natural Science Foundation of China Project(50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The microstructures and mechanical properties of an iron-based alloy (Fe-13Cr-3W-0.4Ti-0.25Y-0.30O) prepared by mechanical alloying were investigated with scanning electron microscope,optical microscope,X-ray diffractometer and hardness tester.The results show that the particle size does not decrease with milling time because serious welding occurs at 144 h.The density of the alloy sintered at 1 523 K is affected by the particle size of the powder.Finer particles lead to a high sintered density,while the bulk density by using particles milled for 144 h is as low as 70%.In the microstructures of the annealed alloy,large elongated particles and fine equiaxed grains can be detected.The elongated particle zone has a higher microhardness than the equiaxed grain area in the annealed alloys due to the larger residual strain and higher density of the precipitated phase.
文摘7039 Al alloy plates which were used as armor materials were produced by powder metallurgy method. The prepared mixed powders were pressed and plated by extrusion process. These plates, after being subjected to T6 heat treatment, were joined double-sided by friction stir welding method. Microstructure and microhardness of the welded plate were investigated. It was determined that the finest grain structure and the lowest hardness value occurred in the stir zone as 2-6 mm and HV 80.9, respectively. In order to determine the ballistic properties of welded plates, 7.62 mm armor piercing projectiles were shot to the base metal(BM), heat affected zone(HAZ), and thermomechanically affected zone+stir zone(TMAZ+SZ). Ballistic limits(v_(50)) of these zones were determined. The ballistic limits of the BM, TMAZ+SZ, and HAZ of the plate were approximately 14.7%, 15.3%, and 17.9% lower than that of the standard plate at the same thickness, respectively. It was determined that the armor piercing projectiles created petaling and ductile hole enlargement failure types at the armor plate. Ballistic and mechanical results can be enhanced by hot-cold rolling mills after extrusion and particle reinforcement.
基金financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through the Project Nos.Ⅲ45012,172019 andⅢ45015.
文摘Nickel-cobalt(Ni-Co) alloy powders were produced galvanostatically by using sulphate electrolytes with various ratios of Ni2+/Co2+(mole ratios). The morphology, phase structure, chemical composition and magnetic properties were examined by scanning electron microscope(SEM), X-ray diffractometer(XRD), atomic emission spectrometer(AES), and SQUID-based magnetometer, respectively. Morphology of the particles changed from cauliflower-like and dendritic to coral-like and spongy-like ones with increasing Ni2+/Co2+ ratio from 0.25 to 4.0. XRD analysis of the Ni-Co powders revealed that the decrease of Ni2+/Co2+ ratios(the increase of Co content) caused a change of structure from face centered cubic(FCC) obtained for the ratios of 4.0, 1.5 and 0.67 to a mixture of FCC and hexagonal closed-packed(HCP) phases for the ratio of 0.25. The increasing content of nickel led to change of mechanism of electrolysis from irregular(up to 40 wt.% Ni in the electrolytes) to close to equilibrium(between 40 and 60 wt.% Ni in the electrolytes) and anomalous co-deposition(over 60 wt.% Ni in the electrolytes) type. All of the obtained Ni-Co alloy samples behaved as soft magnetic materials while their magnetic parameters showed immediate composition dependence since both coercivity and saturation magnetization almost linearly increased with increase of the Co content.
文摘Baded on the study of nickel electroplating technology at room temperature, the plated sheet containing rapidly solidified Al-Fe-Cu- V-Si-Ni-Ce-Zr aluminum alloy powders is constructed successfully. The powders and nickel matrix are combined well in the sheet. It can be used to prepare the observation specimen for TEM and determine the hardness of single powder particle as solidified and after heat-treated. The advantages of this method are the realization of heat treatment of powders and the TEM observation of non-interfered microstructure of powders in the size of several microns.
基金financial supports from the Scientific and Technological Research Council of Turkey(No.215M895)。
文摘This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.
文摘Therecent developments in elevated temperature ( ET) aluminum alloys prepared by therapidsolidification / powder metallurgy ( RS P/ M) process were reviewed briefly. TheRS P/ METaluminum alloyscan beclassified as(a) the aluminum transition metaltype, such as Al Fe, Al Cr, Al Ti, Al Zrsystem alloys,etc.,and (b) thealuminum rareearth elementtype,such as Al Y, Al Nd system alloys,etc. Among them ,the Al Fe and Al Ti system alloysarethe most attractive, which possessthe potentialto replacethetitanium alloy partson aircraft,engines,etc.,fortheuseattemperaturesrangingfrom 200 315℃. Theproblemsin applicationsfor RS P/ M ETaluminum alloys werealso discussed .
基金financial support of the National Natural Science Foundation of China (No. 50371072)the Hunan Provincial Natural Science Foundation (No. 09JJ3086)
文摘The powders of pure Al, Fe, and Zr for preparing Al78Fe20Zr2 were subject to a high-energy planetary ball milling.The microstructure evolution of the mixtures at the different intervals of milling was characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC).It was found that a nearly complete amorphization could be achieved in the mixtures after ball milling for 23 h.Further ball milling led to the crystallization of the amorphous powders.A long time ball milling, e.g., 160 h, led to a complete crystallization of the amorphous powders and the formation of Al3Zr and Al13Fe4.The crystallization products caused by ball milling are almost the same as that produced by isothermal annealing of the amorphous powders in vacuum at 800 K for 1 h.
文摘A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.
文摘Al-4.9 Fe-4.9 Ni alloy powders have been synthesized by mechanical alloying. The rnechanically alloyed powders are consolidated by hot hydrostatic extrusion. The results show that extrusion tempereture. extrusion ratio and lubricant have great effects on the quality of extruded rods and their mechanical properties, The mixture of graphite and glass powders as lubricant can prevent the oxidization of cold compacted billet by cladding the billet with this lubricant before heating. This technique greatly simplifies the conventional densification process of powders
文摘The brown metallic luster La-Ni alloy powders were prepared by potentiostatic electrolysis technique in dimethylsulfoxide solution at room temperature. The atomic rate of La and Ni in alloy powders are 11∶1 and 10∶1. The size of metal grains is about 0.1 to 100 μm. It shows that the micrometer powders of rare earth alloys can be obtained by controlling electrodeposition conditions. The peak potentials of -2.81 and 1.75 V are attributed to reduction of La 3+ and Ni 3+ ions, respectively. The peak potentials at -2.20 and -0.168 V are the oxidation peaks of lanthanum and nickel, respectively. When potential is more negative than -1.74 V, La(Ⅲ) and Ni(Ⅱ) will codeposit. Increasing cyclic times, the value of peak current is decreasing, and the reduction peak of La(Ⅲ) was finally disappeared.
文摘Observations of microstructure of explosive compacts made of Al or Al-Li alloy powders by atomization with water,nitrogen or ultrasoic Ar gas were carried out under optical and scanning electron microscopes.The rsults indicate that super quality explosive compact can only be obtained by powders of which the thickness of the oxide layer is less than 30 nm.
基金Sponsored by the National Basic Research Development Program of China(973 Program)(Grant No.2012CB619503)National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA031001)International S&T Cooperation Program of China(Grant No.2012DFA50630)
文摘2024 Aluminum alloy powder( 60wt%) and Fe-based amorphous powder( 40 wt%) were adopted. They were mechanical machined for 48hours after being mixed. Bulk material was gained after Spark Plasma Sintering. The sintering parameters included sintering temperature,heating or cooling rates,pressure and holding time. 300 ℃- 800 ℃ were adopted while the heating or cooling rate was 100 ℃ / min and with the pressure of 50 MPa in the experiments. The holding time was 10 min or 20 min at different temperatures, respectively. Bulk materials after sintering were examined by Scanning Electron Microscopy and X-Ray Diffraction. The micro-hardness and relative density also were tested. The sintering temperature had the most significant influence on the microstructure and property of the bulk material. The influence of holding time came second while the heating or cooling rates and pressure were fixed. The density became larger with the increase of the temperature. The compactness was best at 500℃. The pressure and generation of high-temperature phases were the factors which affected the density and the compactness.
文摘The ultrafine alloy powders,CuRh,γ-Ni_(0.33)Fe_(0.66) and α-Fe_(0.66)Co_(0.33) of size less than 35 nm were prepared by reduction of complex metallic oxides under atmosphere of 15% H_2 and 85%Ar.