AIM: To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses.METHODS: Two multifocal contact lenses of center-near design and one mul...AIM: To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses.METHODS: Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed.RESULTS: The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about ?3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens.CONCLUSION: In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient’s visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.展开更多
In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA)...In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.展开更多
Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify the pyramid effects by the PS in...Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify the pyramid effects by the PS into the following two types. (i) The pyramid effects in which the PS converted the test subject’s unexplained energy to affect biosensors when the test subject entered the PS and meditated. (ii) The pyramid effects in which the potential power of the PS affect</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> biosensors if the test subject ha</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> not been inside the PS for at least 20 days and the test subject’s unexplained energy was excluded. In this paper, we report new results regarding (ii). As a result of dividing a year according to the four seasons of winter, spring, summer, and autumn and analyzing the pyramid effect of each period, the following points were found. 1) There was a pyramid effect without seasonal variation. The pyramid effect on the lower and upper layers was different throughout the year for the biosensors placed at the PS apex in two layers, regardless of the season. 2) There was a pyramid effect with seasonal variation. The value of the psi index, which indicates the magnitude of the pyramid effect, changed as the seasons changed, while different pyramid effects were maintained on the lower and upper layers. Regarding the change in the pyramid effect depending on the season, the psi index in summer was larger than that in winter in both the lower and upper layers. From these results, we found that there are two types of potential power at the PS apex: seasonal potential power and non-seasonal potential power.展开更多
There have been various traditions and books which describe a so-called “pyramid power”, but there have been almost no reliable academic studies and no statistically significant data about it. We have continued scie...There have been various traditions and books which describe a so-called “pyramid power”, but there have been almost no reliable academic studies and no statistically significant data about it. We have continued scientifically rigorous experiments using biosensors to elucidate unexplained functions of a pyramidal structure (PS) since 2007. We used edible cucumber sections as biosensors and measured the concentrations of gas emitted from the sections by a technique developed by our group. From them we have demonstrated with high statistical accuracy the existence of the “pyramid power”, which was often recognized as having no scientific basis. We reached two conclusions from the work. 1) The PS converted the unconsciousness of a human (the test subject) more than 6 km away to energy detectable by the biosensors (1% significance). 2) The PS accumulated the influence that a human (the test subject) had when meditating within the PS. Then the PS converted the influence into the energy detectable by the biosensors (10-3% significance). These two conclusions showed that the functions of the PS were detected when “the PS and a human were related”. On the other hand, we hypothesized that the potential power of the PS could be detected even when “the PS and a human were not related”. In this paper, our purpose is to verify the existence of the potential power of the PS alone by experiment when “the PS and a human were not related”. The following three results were obtained by experiment. 1) The presence of the potential power of the PS was demonstrated with 1% significance. 2) The potential power of the PS changed in value between summer and winter, and it was clear that the non-contact effect on the biosensors was larger in summer and smaller in winter. 3) The potential power of the PS affected only the biosensors placed at the PS apex, and did not affect the biosensors placed at the calibration control point 8 m away from the PS. This paper is the first report in the world to show this type of effect by scientific measurements. Our research results may open up a new science field of “pyramid power”, from which we expect further development of fields applying this “pyramid power”.展开更多
Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structur...Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structure (PS) since October 2007. The research focuses on the detection of a non-contact effect of the unexplained “power” of the PS on biosensors (i.e., edible cucumber sections of Cucumis sativus “white spine type”) placed at the top of the PS. In this paper, in particular, we compared the non-contact effect of upper and lower biosensors placed in two layers on the PS apex, and we analyzed the difference of the non-contact effect due to the difference in the layers. The magnitude of the non-contact effect was represented by the calibrated psi index Ψ(E-CAL) calculated from gas concentrations emitted from the biosensors. A method to determine the presence or absence of the non-contact effect by analyzing the gas concentrations was developed by the International Research Institute (IRI). Ψ(E-CAL), which represents the magnitude of the non-contact effect, was the average value of the respective non-contact effect of the upper and lower biosensors stacked in two layers on the PS apex. We conducted the analysis on the assumption that the non-contact effect on the upper and lower biosensors might be different. Therefore, we considered that upper and lower biosensor calibration was required for Ψ(E-CAL), and we introduced a new calibrated psi index Ψ(E-CAL)Layer. Scientifically rigorous experiments to date have detected Ψ(E-CAL) with statistical significance and have demonstrated potential power of the PS (p = 6.0 × 10-3;Welch’s t-test, two-tails, the following p values are also the Welch’s t-test values). Based on data demonstrating the potential power of the PS, we analyzed the non-contact effects on the upper and lower biosensors of the PS apex. We obtained a surprising result that the non-contact effect on the upper biosensors (farther from the PS) was larger than that on the lower biosensors (closer to the PS) (p = 4.0 × 10-7). This suggested that the characteristic of the potential power of the PS, which is considered to exist near the PS apex, is distinctive. We also found that the non-contact effect due to the potential power of the PS varies with the season, and is large in summer and small in winter. In our discussion, we proposed a model that could theoretically explain the experimental results that the non-contact effect on the upper biosensors at the PS apex is larger than the lower biosensors. In proposing this model, we assumed that there were two different types of potential power at the PS apex and that the biosensors had two different gas-generating reactions. In a simulation using the model, the experimental results were well approximated in which the non-contact effect on the biosensors differs depending on the difference between the upper and lower layers. The results of this paper are the world’s first to prove aspects of the “pyramid power” through scientifically rigorous experiments and analysis. These results will become a new field of science in the future, and their broad applications are expected.展开更多
Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify pyramid effects by the PS into t...Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify pyramid effects by the PS into the following two types: (i) the pyramid effects due to the potential power of the PS and (ii) the pyramid effects due to the influence of the test subject meditating inside the PS. We have been using edible cucumber sections as the biosensors. The pyramid effect existence was clarified by measuring and analyzing the concentration of volatile components released from the biosensors. The biosensors were arranged as a pair: one member of the pair was placed at the PS apex and the other was placed at the calibration control point 8.0 m away from the PS. In this paper, we report a new discovery regarding the type (i) pyramid effects. We discovered a phenomenon considered to be entanglement between the biosensor pairs detecting the pyramid effects. In other words, the biosensors at the PS apex, which were affected by the potential power of the PS, affected the biosensors at the calibration control point. We also confirmed that the effects on the biosensors placed at the calibration control point were not due to the potential power of the PS. Furthermore, we showed that the magnitude of the effect of entanglement changed with the seasons. We expect that our research results will be widely accepted in the future and will become the foundation for a new research field in science, with a wide range of applications.展开更多
At present, the widely applied mechanical on-load tap-changer is not suitable for the 10 kV power distribution network. Along with the development of power electronic technology, there has the report on on-load tap ch...At present, the widely applied mechanical on-load tap-changer is not suitable for the 10 kV power distribution network. Along with the development of power electronic technology, there has the report on on-load tap changing (OLTC) distributing transformer based on the power electronic technology. In this paper, the analysis on the characteristic of several kinds of non-contacts OLTC distributing transformer was carried on. The result indicates that OLTC distributing transformer based on the solid state relay has the broad applied prospect in the 10 kV medium distribution network.展开更多
Electrified railway is an important but disturbing load in power system. In China railway electrification is gaining momentum at the end of this century.The Ministry of Railway has a clear indication that the developm...Electrified railway is an important but disturbing load in power system. In China railway electrification is gaining momentum at the end of this century.The Ministry of Railway has a clear indication that the development trend of railway transportation is the coexistence of internal-combustion engine locomotive and electrified locomotive. Meanwhile it will make strenuous efforts to develop the electrified railWay for the plain land, the main lines and the busy areas of transportation. It is obvious that the importance of electrified railway in railWay transpoftation will be enhanced more and more. It is going to be an important load to power systems all over China. But it is a disturbing load It gives serious harmonics pollution to power system if not properly maintained. This paper describes a new advanced method, fuzzy image recognition technique, to improve the adjustment during maintenance of the supply line so that good contact of the pantograph with the power line is ensured. This case also serves as an example to illustrate how the work on the demand side effectively improves the operation of the power system.展开更多
基金Supported by the AGEYE project(No.608049)the Marie Curie Initial Training Network program(No.FP7-PEOPLE-2013-ITN)the European Commission,Brussels,Belgium and by an Atraccióde Talent(University of Valencia)research scholarship granted to Antonio J.Deláguila-Carrasco(No.UV-INV-PREDOC14-179135)
文摘AIM: To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses.METHODS: Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed.RESULTS: The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about ?3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens.CONCLUSION: In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient’s visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.
基金supported by the Natural Science Foundation of China under Grant No.51175423
文摘In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.
文摘Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify the pyramid effects by the PS into the following two types. (i) The pyramid effects in which the PS converted the test subject’s unexplained energy to affect biosensors when the test subject entered the PS and meditated. (ii) The pyramid effects in which the potential power of the PS affect</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;"> biosensors if the test subject ha</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> not been inside the PS for at least 20 days and the test subject’s unexplained energy was excluded. In this paper, we report new results regarding (ii). As a result of dividing a year according to the four seasons of winter, spring, summer, and autumn and analyzing the pyramid effect of each period, the following points were found. 1) There was a pyramid effect without seasonal variation. The pyramid effect on the lower and upper layers was different throughout the year for the biosensors placed at the PS apex in two layers, regardless of the season. 2) There was a pyramid effect with seasonal variation. The value of the psi index, which indicates the magnitude of the pyramid effect, changed as the seasons changed, while different pyramid effects were maintained on the lower and upper layers. Regarding the change in the pyramid effect depending on the season, the psi index in summer was larger than that in winter in both the lower and upper layers. From these results, we found that there are two types of potential power at the PS apex: seasonal potential power and non-seasonal potential power.
文摘There have been various traditions and books which describe a so-called “pyramid power”, but there have been almost no reliable academic studies and no statistically significant data about it. We have continued scientifically rigorous experiments using biosensors to elucidate unexplained functions of a pyramidal structure (PS) since 2007. We used edible cucumber sections as biosensors and measured the concentrations of gas emitted from the sections by a technique developed by our group. From them we have demonstrated with high statistical accuracy the existence of the “pyramid power”, which was often recognized as having no scientific basis. We reached two conclusions from the work. 1) The PS converted the unconsciousness of a human (the test subject) more than 6 km away to energy detectable by the biosensors (1% significance). 2) The PS accumulated the influence that a human (the test subject) had when meditating within the PS. Then the PS converted the influence into the energy detectable by the biosensors (10-3% significance). These two conclusions showed that the functions of the PS were detected when “the PS and a human were related”. On the other hand, we hypothesized that the potential power of the PS could be detected even when “the PS and a human were not related”. In this paper, our purpose is to verify the existence of the potential power of the PS alone by experiment when “the PS and a human were not related”. The following three results were obtained by experiment. 1) The presence of the potential power of the PS was demonstrated with 1% significance. 2) The potential power of the PS changed in value between summer and winter, and it was clear that the non-contact effect on the biosensors was larger in summer and smaller in winter. 3) The potential power of the PS affected only the biosensors placed at the PS apex, and did not affect the biosensors placed at the calibration control point 8 m away from the PS. This paper is the first report in the world to show this type of effect by scientific measurements. Our research results may open up a new science field of “pyramid power”, from which we expect further development of fields applying this “pyramid power”.
文摘Research on “pyramid power” began in the late 1930s. To date, many documents on “pyramid power” have been published. We have been conducting scientific research on the unexplained “power” of a pyramidal structure (PS) since October 2007. The research focuses on the detection of a non-contact effect of the unexplained “power” of the PS on biosensors (i.e., edible cucumber sections of Cucumis sativus “white spine type”) placed at the top of the PS. In this paper, in particular, we compared the non-contact effect of upper and lower biosensors placed in two layers on the PS apex, and we analyzed the difference of the non-contact effect due to the difference in the layers. The magnitude of the non-contact effect was represented by the calibrated psi index Ψ(E-CAL) calculated from gas concentrations emitted from the biosensors. A method to determine the presence or absence of the non-contact effect by analyzing the gas concentrations was developed by the International Research Institute (IRI). Ψ(E-CAL), which represents the magnitude of the non-contact effect, was the average value of the respective non-contact effect of the upper and lower biosensors stacked in two layers on the PS apex. We conducted the analysis on the assumption that the non-contact effect on the upper and lower biosensors might be different. Therefore, we considered that upper and lower biosensor calibration was required for Ψ(E-CAL), and we introduced a new calibrated psi index Ψ(E-CAL)Layer. Scientifically rigorous experiments to date have detected Ψ(E-CAL) with statistical significance and have demonstrated potential power of the PS (p = 6.0 × 10-3;Welch’s t-test, two-tails, the following p values are also the Welch’s t-test values). Based on data demonstrating the potential power of the PS, we analyzed the non-contact effects on the upper and lower biosensors of the PS apex. We obtained a surprising result that the non-contact effect on the upper biosensors (farther from the PS) was larger than that on the lower biosensors (closer to the PS) (p = 4.0 × 10-7). This suggested that the characteristic of the potential power of the PS, which is considered to exist near the PS apex, is distinctive. We also found that the non-contact effect due to the potential power of the PS varies with the season, and is large in summer and small in winter. In our discussion, we proposed a model that could theoretically explain the experimental results that the non-contact effect on the upper biosensors at the PS apex is larger than the lower biosensors. In proposing this model, we assumed that there were two different types of potential power at the PS apex and that the biosensors had two different gas-generating reactions. In a simulation using the model, the experimental results were well approximated in which the non-contact effect on the biosensors differs depending on the difference between the upper and lower layers. The results of this paper are the world’s first to prove aspects of the “pyramid power” through scientifically rigorous experiments and analysis. These results will become a new field of science in the future, and their broad applications are expected.
文摘Since October 2007, we have been conducting rigorous scientific research on the unexplained “power” of a pyramidal structure (PS). From our research results so far, we could classify pyramid effects by the PS into the following two types: (i) the pyramid effects due to the potential power of the PS and (ii) the pyramid effects due to the influence of the test subject meditating inside the PS. We have been using edible cucumber sections as the biosensors. The pyramid effect existence was clarified by measuring and analyzing the concentration of volatile components released from the biosensors. The biosensors were arranged as a pair: one member of the pair was placed at the PS apex and the other was placed at the calibration control point 8.0 m away from the PS. In this paper, we report a new discovery regarding the type (i) pyramid effects. We discovered a phenomenon considered to be entanglement between the biosensor pairs detecting the pyramid effects. In other words, the biosensors at the PS apex, which were affected by the potential power of the PS, affected the biosensors at the calibration control point. We also confirmed that the effects on the biosensors placed at the calibration control point were not due to the potential power of the PS. Furthermore, we showed that the magnitude of the effect of entanglement changed with the seasons. We expect that our research results will be widely accepted in the future and will become the foundation for a new research field in science, with a wide range of applications.
文摘At present, the widely applied mechanical on-load tap-changer is not suitable for the 10 kV power distribution network. Along with the development of power electronic technology, there has the report on on-load tap changing (OLTC) distributing transformer based on the power electronic technology. In this paper, the analysis on the characteristic of several kinds of non-contacts OLTC distributing transformer was carried on. The result indicates that OLTC distributing transformer based on the solid state relay has the broad applied prospect in the 10 kV medium distribution network.
文摘Electrified railway is an important but disturbing load in power system. In China railway electrification is gaining momentum at the end of this century.The Ministry of Railway has a clear indication that the development trend of railway transportation is the coexistence of internal-combustion engine locomotive and electrified locomotive. Meanwhile it will make strenuous efforts to develop the electrified railWay for the plain land, the main lines and the busy areas of transportation. It is obvious that the importance of electrified railway in railWay transpoftation will be enhanced more and more. It is going to be an important load to power systems all over China. But it is a disturbing load It gives serious harmonics pollution to power system if not properly maintained. This paper describes a new advanced method, fuzzy image recognition technique, to improve the adjustment during maintenance of the supply line so that good contact of the pantograph with the power line is ensured. This case also serves as an example to illustrate how the work on the demand side effectively improves the operation of the power system.