Due to undesirable interference via unintended coupling paths, switching converters may exhibit complex intermittency, which appears as a form of bifurcation undergoing regular operation, subharmonics, and chaos order...Due to undesirable interference via unintended coupling paths, switching converters may exhibit complex intermittency, which appears as a form of bifurcation undergoing regular operation, subharmonics, and chaos orderly and repeatedly for a long period of time. Such intermittent operation, being an unwanted operating state, should normally be avoided in power converters. This paper expounds the mechanism and conditions for the emergence of intermittency in a common current-mode controlled Boost converter. It is found that interference at frequencies near the switching frequency or its rational multiples may induce intermittent operation. The strengths and frequencies of the interfering signals determine the type and period of intermittency. The problem is analyzed by transforming the time-bifurcation analysis to a conventional parameter-bifurcation analysis. Based on this transformation, intermittency can be investigated from the bifurcation control viewpoint. Furthermore, the critical circuit parameter conditions for the emergence of intermittency can be predicted and compared with those from circuit simulation.展开更多
In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
A stroboscopic map for voltage-controlled single ended primary inductor converter (SEPIC) with pulse width modulation (PWM) is presented, where low-frequency oscillating phenomena such as quasi-periodic and interm...A stroboscopic map for voltage-controlled single ended primary inductor converter (SEPIC) with pulse width modulation (PWM) is presented, where low-frequency oscillating phenomena such as quasi-periodic and intermittent quasi-periodic bifurcations occurring in the system are captured by numerical and experimental methods. According to bifurcation diagrams and nonlinear dynamical theory, the characteristics of the low-frequency oscillation and the mechanism for the appearance of the low-frequency oscillation are investigated. It is shown that as the controller parameter varies, the change in the conduction mode takes place from the continuous conduction mode (CCM) under the originally stable period one and high periodic orbits to the intermittent changes between CCM and discontinuous conduction mode (DCM), which may be related to the losing stability of the system and brought the system to exhibiting low-frequency oscillating behaviour in the time domain. Moreover, the occurrence of the intermittent quasi-periodic oscillation reflects that the system undergoes a Neimark-Sacker bifurcation.展开更多
Based on boost converter operating in discontinuous mode, this paper proposes an energy balance model (EBM) for analyzing bifurcation and chaos phenomena of capacitor energy and output voltage when the converter param...Based on boost converter operating in discontinuous mode, this paper proposes an energy balance model (EBM) for analyzing bifurcation and chaos phenomena of capacitor energy and output voltage when the converter parameter is varying. It is found that the capacitor energy and output voltage dynamic behaviors exhibit the typical period-doubling route to chaos by increasing the feedback gain constant K of proportional controller. The accurate position of the first bifurcation point and the iterative diagram of the capacitor energy with every K can be derived from EBM. Finally, the underlying causes for bifurcations and chaos of a general class of nonlinear systems such as power converters are analyzed from the energy balance viewpoint. Com-paring with the discrete iterative model, EBM is simple and high accuracy. This model can be easily devel-oped on the nonlinear study of the other converters.展开更多
This paper studies on the change mechanisms of the voltage stability caused by the grid connection of front-end speed-controlled wind turbines(FSCWT)integrating into power system.First of all,the differential algebrai...This paper studies on the change mechanisms of the voltage stability caused by the grid connection of front-end speed-controlled wind turbines(FSCWT)integrating into power system.First of all,the differential algebraic equations describing the dynamic characteristics of wind turbines are illustrated.Then,under the guidance of IEEE3 node system model,the influence of the angular velocity of wind turbines,the reactive power and the active power at load bus on the voltage stability of grid-connection has been analyzed by using bifurcation theory.Finally,the method of linear-state feedback control has been applied to the original system in accordance with the bifurcation phenomenon of grid-connected voltage caused by the increase in the active power at load bus.Research shows that voltage at the grid-connected point would be changed with the fluctuation of turbines angular velocity.And increasing its reactive power can enhance voltage at the grid-connected point;problem of bifurcation at the grid-connected point can be delayed when increasing the gain k s of feedback controller within a certain range.展开更多
In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Bas...In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.展开更多
A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters...A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters on the bifurcation behaviors of V^2C control and current-mode control boost converters were analyzed. The phase portraits and time-domain waveforms of the V^2C control boost converter were obtained by Runge-Kutta algorithm through piecewise smooth switching model. The research results indicate that V^2C control boost converters can evolve into periodic and chaotic behaviors, and show weaker nonlinear behaviors than current-mode control boost converters.展开更多
In this paper, we aim to control an instable chaotic oscillation in power system that is considered to be small system by using a linear state feedback controller. First we will analyze the stability of the mentioned ...In this paper, we aim to control an instable chaotic oscillation in power system that is considered to be small system by using a linear state feedback controller. First we will analyze the stability of the mentioned power system by means of modern nonlinear theory (Bifurcation and Chaos). Our model is based on a three bus power system that consists of multi generators containing both dynamic and static loads. They are considered to be in the form of an induction motor in parallel with a capacitor, as well as a combination of constant power along with load impedance, PQ. We consider the load reactive power as the control parameter. At this stage, after changing the control parameter, the study showed that the system is experiencing a subcritical Hopf bifurcation point. This leads to a chaos within the system period doubling path. We then discuss the system controllability and present that the all chaotic oscillations fade away through the linear controller that we impose on the system.展开更多
集中送出的陆上风电场电压支撑能力弱,且有功送电距离大多较长,随着其有功出力的增加,其电压稳定问题不可忽视。在实际电网中,曾出现过陆上风电场在高出力、无故障下、低电压穿越控制方式导致的电压振荡失稳现象,该文基于简化模型,针对...集中送出的陆上风电场电压支撑能力弱,且有功送电距离大多较长,随着其有功出力的增加,其电压稳定问题不可忽视。在实际电网中,曾出现过陆上风电场在高出力、无故障下、低电压穿越控制方式导致的电压振荡失稳现象,该文基于简化模型,针对该现象进行机理分析,并引申出适用于多机系统的判据。在机理分析方面,说明其对应一种高出力下低电压穿越控制诱导的非光滑分岔(high output excited low voltage ride through control induced non-smooth bifurcation,HLINB),并分析了HLINB与鞍结分岔(saddle node bifurcation,SNB)发生的边界条件;在判据方面,给出了发生HLINB的判据,并结合二阶锥算法给出判据的阈值计算方法。具体地,首先,基于实际案例,对陆上风电场无故障、高出力下,由低穿控制方式导致的电压振荡现象进行分析,说明该振荡现象对应于HLINB,进一步,推导HLINB与SNB发生的边界条件,结果表明,在风电场的典型低穿控制方式下,陆上风电场在高出力时更容易发生HLINB而非SNB;其次,分析了其他风电场无功控制方式对于待评估风电场的最大输出功率的影响,并基于二阶锥算法,给出考虑风电场无功控制方式及无功约束下,计及HLINB约束的风电场的最大输出功率的计算方法;最后,3机9节点和10机39节点的仿真算例表明,所提方法考虑风电场的控制方式,能够更加有效的评估系统的电压稳定性。展开更多
基金the National Natural Science Foundation of China (Grant Nos. 60402001 and 60672023)the Science and Technological Fund of Anhui Province for Outstanding Youth (Grant No. 08040106807)
文摘Due to undesirable interference via unintended coupling paths, switching converters may exhibit complex intermittency, which appears as a form of bifurcation undergoing regular operation, subharmonics, and chaos orderly and repeatedly for a long period of time. Such intermittent operation, being an unwanted operating state, should normally be avoided in power converters. This paper expounds the mechanism and conditions for the emergence of intermittency in a common current-mode controlled Boost converter. It is found that interference at frequencies near the switching frequency or its rational multiples may induce intermittent operation. The strengths and frequencies of the interfering signals determine the type and period of intermittency. The problem is analyzed by transforming the time-bifurcation analysis to a conventional parameter-bifurcation analysis. Based on this transformation, intermittency can be investigated from the bifurcation control viewpoint. Furthermore, the critical circuit parameter conditions for the emergence of intermittency can be predicted and compared with those from circuit simulation.
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
基金Project supported by the Natural Science Foundation of Ningxia Autonomous Region,China(Grant No.NZ0954)
文摘A stroboscopic map for voltage-controlled single ended primary inductor converter (SEPIC) with pulse width modulation (PWM) is presented, where low-frequency oscillating phenomena such as quasi-periodic and intermittent quasi-periodic bifurcations occurring in the system are captured by numerical and experimental methods. According to bifurcation diagrams and nonlinear dynamical theory, the characteristics of the low-frequency oscillation and the mechanism for the appearance of the low-frequency oscillation are investigated. It is shown that as the controller parameter varies, the change in the conduction mode takes place from the continuous conduction mode (CCM) under the originally stable period one and high periodic orbits to the intermittent changes between CCM and discontinuous conduction mode (DCM), which may be related to the losing stability of the system and brought the system to exhibiting low-frequency oscillating behaviour in the time domain. Moreover, the occurrence of the intermittent quasi-periodic oscillation reflects that the system undergoes a Neimark-Sacker bifurcation.
文摘Based on boost converter operating in discontinuous mode, this paper proposes an energy balance model (EBM) for analyzing bifurcation and chaos phenomena of capacitor energy and output voltage when the converter parameter is varying. It is found that the capacitor energy and output voltage dynamic behaviors exhibit the typical period-doubling route to chaos by increasing the feedback gain constant K of proportional controller. The accurate position of the first bifurcation point and the iterative diagram of the capacitor energy with every K can be derived from EBM. Finally, the underlying causes for bifurcations and chaos of a general class of nonlinear systems such as power converters are analyzed from the energy balance viewpoint. Com-paring with the discrete iterative model, EBM is simple and high accuracy. This model can be easily devel-oped on the nonlinear study of the other converters.
基金National Natural Science Foundation of China(No.61663019)
文摘This paper studies on the change mechanisms of the voltage stability caused by the grid connection of front-end speed-controlled wind turbines(FSCWT)integrating into power system.First of all,the differential algebraic equations describing the dynamic characteristics of wind turbines are illustrated.Then,under the guidance of IEEE3 node system model,the influence of the angular velocity of wind turbines,the reactive power and the active power at load bus on the voltage stability of grid-connection has been analyzed by using bifurcation theory.Finally,the method of linear-state feedback control has been applied to the original system in accordance with the bifurcation phenomenon of grid-connected voltage caused by the increase in the active power at load bus.Research shows that voltage at the grid-connected point would be changed with the fluctuation of turbines angular velocity.And increasing its reactive power can enhance voltage at the grid-connected point;problem of bifurcation at the grid-connected point can be delayed when increasing the gain k s of feedback controller within a certain range.
基金supported by the National Natural Science Foundation of China (No.60402001)the National High Technology Research and Development Program of China (No.2004AA1Z1060).
文摘In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.
基金The National Natural Science Foundation of China (No.50677056)the Natural Science Foundations of Jiangsu Province (No.BK2009105)
文摘A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters on the bifurcation behaviors of V^2C control and current-mode control boost converters were analyzed. The phase portraits and time-domain waveforms of the V^2C control boost converter were obtained by Runge-Kutta algorithm through piecewise smooth switching model. The research results indicate that V^2C control boost converters can evolve into periodic and chaotic behaviors, and show weaker nonlinear behaviors than current-mode control boost converters.
文摘In this paper, we aim to control an instable chaotic oscillation in power system that is considered to be small system by using a linear state feedback controller. First we will analyze the stability of the mentioned power system by means of modern nonlinear theory (Bifurcation and Chaos). Our model is based on a three bus power system that consists of multi generators containing both dynamic and static loads. They are considered to be in the form of an induction motor in parallel with a capacitor, as well as a combination of constant power along with load impedance, PQ. We consider the load reactive power as the control parameter. At this stage, after changing the control parameter, the study showed that the system is experiencing a subcritical Hopf bifurcation point. This leads to a chaos within the system period doubling path. We then discuss the system controllability and present that the all chaotic oscillations fade away through the linear controller that we impose on the system.
文摘集中送出的陆上风电场电压支撑能力弱,且有功送电距离大多较长,随着其有功出力的增加,其电压稳定问题不可忽视。在实际电网中,曾出现过陆上风电场在高出力、无故障下、低电压穿越控制方式导致的电压振荡失稳现象,该文基于简化模型,针对该现象进行机理分析,并引申出适用于多机系统的判据。在机理分析方面,说明其对应一种高出力下低电压穿越控制诱导的非光滑分岔(high output excited low voltage ride through control induced non-smooth bifurcation,HLINB),并分析了HLINB与鞍结分岔(saddle node bifurcation,SNB)发生的边界条件;在判据方面,给出了发生HLINB的判据,并结合二阶锥算法给出判据的阈值计算方法。具体地,首先,基于实际案例,对陆上风电场无故障、高出力下,由低穿控制方式导致的电压振荡现象进行分析,说明该振荡现象对应于HLINB,进一步,推导HLINB与SNB发生的边界条件,结果表明,在风电场的典型低穿控制方式下,陆上风电场在高出力时更容易发生HLINB而非SNB;其次,分析了其他风电场无功控制方式对于待评估风电场的最大输出功率的影响,并基于二阶锥算法,给出考虑风电场无功控制方式及无功约束下,计及HLINB约束的风电场的最大输出功率的计算方法;最后,3机9节点和10机39节点的仿真算例表明,所提方法考虑风电场的控制方式,能够更加有效的评估系统的电压稳定性。