针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损...针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损积分优点的同时具有良好噪声整形效果。设计了一款分辨率为16 bit、采样率为2 Ms/s的混合架构噪声整形SAR ADC。仿真结果表明,在125 kHz带宽、过采样比为8时,实现了高信号与噪声失真比(SNDR(Signal to Noise and Distortion Ratio)为91.1 dB)、高精度(14.84 bit)和低功耗(285μW)的性能。展开更多
A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC ...A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.展开更多
This paper presents the design and experimental results of a continuous-time (CT) sigma-delta (ΣΔ) modulator with data-weighted average (DWA) technology for WiMAX applications. The proposed modulator comprises a thi...This paper presents the design and experimental results of a continuous-time (CT) sigma-delta (ΣΔ) modulator with data-weighted average (DWA) technology for WiMAX applications. The proposed modulator comprises a third-order active RC loop filter, internal quantizer operating at 160 MHz and three DAC circuits. A multi-bit quantizer is used to increase resolution and multi-bit non-return-to-zero (NRZ) DACs are adopted to reduce clock jitter sensitivity. The NRZ DAC circuits with quantizer excess loop delay compensation are set to be half the sampling period of the quantizer for increasing modulator stability. A dynamic element matching (DEM) technique is applied to multi-bit ΣΔ modulators to improve the nonlinearity of the internal DAC. This approach translates the harmonic distortion components of a nonideal DAC in the feedback loop of a ΣΔ modulator to high-frequency components. Capacitor tuning is utilized to overcome loop coefficient shifts due to process variations. The DWA technique is used for reducing DAC noise due to component mismatches. The prototype is implemented in TSMC 0.18 um CMOS process. Experimental results show that the ΣΔ modulator achieves 54-dB dynamic range, 51-dB SNR, and 48-dB SNDR over a 10-MHz signal bandwidth with an oversampling ratio (OSR) of 8, while dissipating 19.8 mW from a 1.2-V supply. Including pads, the chip area is 1.156 mm2.展开更多
In this article,we presented a 12-bit 80 MS/s low power successive approximation register(SAR)analog to digital converter(ADC)design.A simplified but effective digital calibration scheme was exploited to make the ADC ...In this article,we presented a 12-bit 80 MS/s low power successive approximation register(SAR)analog to digital converter(ADC)design.A simplified but effective digital calibration scheme was exploited to make the ADC achieve high resolution without sacrificing more silicon area and power efficiency.A modified redundancy technique was also adopted to guarantee the feasibility of the calibration and meantime ease the burden of the reference buffer circuit.The prototype SAR ADC can work up to a sampling rate of 80 MS/s with the performance of>10.5 bit equivalent number of bits(ENOB),<±1 least significant bit(LSB)differential nonlinearity(DNL)&integrated nonlinearity(INL),while only consuming less than 2 mA current from a 1.1 V power supply.The calculated figure of merit(FoM)is 17.4 fJ/conversion-step.This makes it a practical and competitive choice for the applications where high dynamic range and low power are simultaneously required,such as portable medical imaging.展开更多
This paper analyzes the power consumption and delay mechanisms of the successive-approximation (SA) logic of a typical asynchronous SAR ADC, and provides strategies to reduce both of them. Following these strategies...This paper analyzes the power consumption and delay mechanisms of the successive-approximation (SA) logic of a typical asynchronous SAR ADC, and provides strategies to reduce both of them. Following these strategies, a unique direct-pass SA logic is proposed based on a full-swing once-triggered DFF and a self-locking tri-state gate. The unnecessary internal switching power of a typical TSPC DFF, which is commonly used in the SA logic, is avoided. The delay of the ready detector as well as the sequencer is removed from the critical path. A prototype SAR ADC based on the proposed SA logic is fabricated in 130 nm CMOS. It achieves a peak SNDR of 56.3 dB at 1.2 V supply and 65 MS/s sampling rate, and has a total power consumption of 555 μW, while the digital part consumes only 203μW.展开更多
文摘针对传统无源有损积分环路滤波器相较于有源无损积分环路滤波器,具有功耗低、电路设计简单等特点,但其噪声传输函数(NTF:Noise Transfer Function)平滑,噪声整形效果较弱的问题,提出了一种无源无损的二阶积分环路滤波器,保留了无源有损积分优点的同时具有良好噪声整形效果。设计了一款分辨率为16 bit、采样率为2 Ms/s的混合架构噪声整形SAR ADC。仿真结果表明,在125 kHz带宽、过采样比为8时,实现了高信号与噪声失真比(SNDR(Signal to Noise and Distortion Ratio)为91.1 dB)、高精度(14.84 bit)和低功耗(285μW)的性能。
文摘A digital background calibration technique that corrects the capacitor mismatches error is proposed for successive approximation register analog-to-digital converter (SAR ADC). The technique is implemented in SAR ADC which is based on tri-level switching. The termination capacitor in the Digital-to-Analog Converter (DAC) is regarded as a reference capacitor and the digital weights of all other unit capacitors are corrected with respect to the reference capacitor. To make a comparison between the size of the unit capacitor and that of the reference capacitor, each input sample is quantized twice. The unit capacitor being calibrated is swapped with the reference capacitor during the second conversion. The difference between the two conversion results is used to correct the digital weight of the unit capacitor under calibration. The calibration technique with two reference capacitors is presented to reduce the number of parameters to be estimated. Behavior simulation is performed to verify the proposed calibration technique by using a 12-bit SAR ADC with 3% random capacitor mismatch. The simulation results show that the Signal-to-Noise and Distortion Ratio (SNDR) is improved from 57.2 dB to 72.2 dB and the Spurious Free Dynamic Range (SFDR) is improved from 60.0 dB to 85.4 dB.
文摘This paper presents the design and experimental results of a continuous-time (CT) sigma-delta (ΣΔ) modulator with data-weighted average (DWA) technology for WiMAX applications. The proposed modulator comprises a third-order active RC loop filter, internal quantizer operating at 160 MHz and three DAC circuits. A multi-bit quantizer is used to increase resolution and multi-bit non-return-to-zero (NRZ) DACs are adopted to reduce clock jitter sensitivity. The NRZ DAC circuits with quantizer excess loop delay compensation are set to be half the sampling period of the quantizer for increasing modulator stability. A dynamic element matching (DEM) technique is applied to multi-bit ΣΔ modulators to improve the nonlinearity of the internal DAC. This approach translates the harmonic distortion components of a nonideal DAC in the feedback loop of a ΣΔ modulator to high-frequency components. Capacitor tuning is utilized to overcome loop coefficient shifts due to process variations. The DWA technique is used for reducing DAC noise due to component mismatches. The prototype is implemented in TSMC 0.18 um CMOS process. Experimental results show that the ΣΔ modulator achieves 54-dB dynamic range, 51-dB SNR, and 48-dB SNDR over a 10-MHz signal bandwidth with an oversampling ratio (OSR) of 8, while dissipating 19.8 mW from a 1.2-V supply. Including pads, the chip area is 1.156 mm2.
文摘In this article,we presented a 12-bit 80 MS/s low power successive approximation register(SAR)analog to digital converter(ADC)design.A simplified but effective digital calibration scheme was exploited to make the ADC achieve high resolution without sacrificing more silicon area and power efficiency.A modified redundancy technique was also adopted to guarantee the feasibility of the calibration and meantime ease the burden of the reference buffer circuit.The prototype SAR ADC can work up to a sampling rate of 80 MS/s with the performance of>10.5 bit equivalent number of bits(ENOB),<±1 least significant bit(LSB)differential nonlinearity(DNL)&integrated nonlinearity(INL),while only consuming less than 2 mA current from a 1.1 V power supply.The calculated figure of merit(FoM)is 17.4 fJ/conversion-step.This makes it a practical and competitive choice for the applications where high dynamic range and low power are simultaneously required,such as portable medical imaging.
基金supported by the National Natural Science Foundation of China(Nos.61204033,61331015)the Fundamental Research Funds for the Central Universities(No.WK2100230015)the Funds of Science and Technology on Analog Integrated Circuit Laboratory(No.9140C090111150C09041)
文摘This paper analyzes the power consumption and delay mechanisms of the successive-approximation (SA) logic of a typical asynchronous SAR ADC, and provides strategies to reduce both of them. Following these strategies, a unique direct-pass SA logic is proposed based on a full-swing once-triggered DFF and a self-locking tri-state gate. The unnecessary internal switching power of a typical TSPC DFF, which is commonly used in the SA logic, is avoided. The delay of the ready detector as well as the sequencer is removed from the critical path. A prototype SAR ADC based on the proposed SA logic is fabricated in 130 nm CMOS. It achieves a peak SNDR of 56.3 dB at 1.2 V supply and 65 MS/s sampling rate, and has a total power consumption of 555 μW, while the digital part consumes only 203μW.