A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
With the rapid development of China's economy, the entire social requires the safety, reliability and automation of power supply and distribution system must be improved. Therefore, extensive application of PLC techn...With the rapid development of China's economy, the entire social requires the safety, reliability and automation of power supply and distribution system must be improved. Therefore, extensive application of PLC technology in power supply and distribution system has great significance to ensure normal social life and production, so as to realize the entire national economy sustained and healthy development. This paper briefly introduces the PLC technology, and with practice elaborates the applications of control technology based on PLC in power supply and distribution system fi:om the reform of low-voltage distribution system, automation management and relay protection of power supply and distribution system etc.展开更多
Interference cancellation is made available by using smart antenna at cellular base stations. Well distributed cumulative probability of signal to interference plus noise power ratio appears to be vital for cellular m...Interference cancellation is made available by using smart antenna at cellular base stations. Well distributed cumulative probability of signal to interference plus noise power ratio appears to be vital for cellular mobile multimedia communications. A scenario of dual links dynamic power control combined to a solution of smart antenna is proposed to adjust the instant transmission power in terms of the disparity from the favorite range. Simulation results show that this method is quite effective to improve the cumulative distribution probability performance. Meanwhile, accompanying low power consumption is also obtained at both base stations and mobile stations.展开更多
In practice,the control charts for monitoring of process mean are based on the normality assumption.But the performance of the control charts is seriously affected if the process of quality characteristics departs fro...In practice,the control charts for monitoring of process mean are based on the normality assumption.But the performance of the control charts is seriously affected if the process of quality characteristics departs from normality.For such situations,we have modified the already existing control charts such as Shewhart control chart,exponentially weighted moving average(EWMA)control chart and hybrid exponentially weighted moving average(HEWMA)control chart by assuming that the distribution of underlying process follows Power function distribution(PFD).By considering the situation that the parameters of PFD are unknown,we estimate them by using three classical estimation methods,i.e.,percentile estimator(P.E),maximum likelihood estimator(MLE)and modified maximum likelihood estimator(MMLE).We construct Shewhart,EWMA and HEWMA control charts based on P.E,MLE and MMLE.We have compared all these control charts using Monte Carlo simulation studies and concluded that HEWMA control chart under MLE is more sensitive to detect an early shift in the shape parameter when the distribution of the underlying process follows power function distribution.展开更多
Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the ratin...Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.展开更多
The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular ...The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular interest to utility companies,but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if they are not properly handled.In this study,we investigate distribution system service restoration using DGs as the primary power source,and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions.The distribution system service restoration problem can be described as a mixed-integer second-order cone programming model by modifying the radial topology constraints and power flow equations.The uncertainty of renewable DGs will be modeled using a chance-constrained approach.Furthermore,the forecast errors and noises in real-time operation are solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output.The proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system.展开更多
In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs...In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs in user-centric paradigm are required to serve more users due to this multiple association scheme.The improvement of system performance may be limited by the improving load of BSs.In this letter,we develope an analytical framework for the load distribution of BSs in heterogeneous user-centric UDN.Based on open loop power control(OLPC),a user-centric scheme is considered in which the clustered serving BSs can provide given signal to interference plus noise ratio(SINR)for any typical user.As for any BS in different tiers,by leveraging stochastic geometry,we derive the Probability Mass Function(PMF)of the number of the served users,the Cumulative Distribution Function(CDF)of total power consumption,and the CDF bounds of downlink sum data rate.The accuracy of the theoretical analysis is validated by numerical simulations,and the effect the system parameters on the load of BSs is also presented.展开更多
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (...This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.展开更多
Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami...Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.展开更多
This paper outlines the achievements andexisting problems of the applications ofdistributed control systems (DCS) indomestic fossil power plants and sets forth itsviews on the future trend in the DCSapplications in fo...This paper outlines the achievements andexisting problems of the applications ofdistributed control systems (DCS) indomestic fossil power plants and sets forth itsviews on the future trend in the DCSapplications in fossil power plants and somecritical tasks the application fields of DCSare faced with.展开更多
There is a danger of power generation efficiency decreasing due to voltage increase when clustered residential PV systems are grid-interconnected to a single distribution line. As a countermeasure, installation of the...There is a danger of power generation efficiency decreasing due to voltage increase when clustered residential PV systems are grid-interconnected to a single distribution line. As a countermeasure, installation of the reactive power control of an inverter at each residence has been considered. However, there are not many types of inverters that can operate reactive power control because there are insufficient effects on a low voltage distribution line with low penetration PV with reactive power control. Therefore, it is necessary to consider how to increase generation efficiency with a lower number of inverters. In this paper, four Japanese standard distribution line structures, for example of a residential area on "C1", where 2,160 residential PV systems are grid-interconnected, are selected. The optimal setting of reactive power control at each residence is computed on the distribution lines with a greedy method.展开更多
Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of sh...Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.展开更多
A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level...A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme.展开更多
Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise...Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the d...A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.展开更多
Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced ...Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.展开更多
Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric ...Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.展开更多
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
文摘With the rapid development of China's economy, the entire social requires the safety, reliability and automation of power supply and distribution system must be improved. Therefore, extensive application of PLC technology in power supply and distribution system has great significance to ensure normal social life and production, so as to realize the entire national economy sustained and healthy development. This paper briefly introduces the PLC technology, and with practice elaborates the applications of control technology based on PLC in power supply and distribution system fi:om the reform of low-voltage distribution system, automation management and relay protection of power supply and distribution system etc.
文摘Interference cancellation is made available by using smart antenna at cellular base stations. Well distributed cumulative probability of signal to interference plus noise power ratio appears to be vital for cellular mobile multimedia communications. A scenario of dual links dynamic power control combined to a solution of smart antenna is proposed to adjust the instant transmission power in terms of the disparity from the favorite range. Simulation results show that this method is quite effective to improve the cumulative distribution probability performance. Meanwhile, accompanying low power consumption is also obtained at both base stations and mobile stations.
文摘In practice,the control charts for monitoring of process mean are based on the normality assumption.But the performance of the control charts is seriously affected if the process of quality characteristics departs from normality.For such situations,we have modified the already existing control charts such as Shewhart control chart,exponentially weighted moving average(EWMA)control chart and hybrid exponentially weighted moving average(HEWMA)control chart by assuming that the distribution of underlying process follows Power function distribution(PFD).By considering the situation that the parameters of PFD are unknown,we estimate them by using three classical estimation methods,i.e.,percentile estimator(P.E),maximum likelihood estimator(MLE)and modified maximum likelihood estimator(MMLE).We construct Shewhart,EWMA and HEWMA control charts based on P.E,MLE and MMLE.We have compared all these control charts using Monte Carlo simulation studies and concluded that HEWMA control chart under MLE is more sensitive to detect an early shift in the shape parameter when the distribution of the underlying process follows power function distribution.
基金support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(KFKT2020-11).
文摘Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.
基金supported by National Natural Science Foundation of China(61273108)the Fundamental Research Funds for the Central Universities(106112013CDJZR175501)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
基金the National Renewable Energy Laboratory(NREL)operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308the U.S.Department of Energy Office of Electricity AOP Distribution Grid Resilience Project.The views expressed in the article do not necessarily represent the views of the DOE or the U.S.Government.The U.S.Government retains and the publisher,by accepting the article for publication,acknowledges that the U.S.Government retains a nonexclusive,paid-up,irrevocable,worldwide license to publish or reproduce the published form of this work,or allow others to do so,for U.S.Government purposes.
文摘The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular interest to utility companies,but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if they are not properly handled.In this study,we investigate distribution system service restoration using DGs as the primary power source,and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions.The distribution system service restoration problem can be described as a mixed-integer second-order cone programming model by modifying the radial topology constraints and power flow equations.The uncertainty of renewable DGs will be modeled using a chance-constrained approach.Furthermore,the forecast errors and noises in real-time operation are solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output.The proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system.
基金supported by National Natural Science Foundation of China (No. 61971161)Foundation of Science and Technology on Communication Networks Laboratory (No.6142104190410)Heilongjiang Touyan Team(No. HITTY20190009)
文摘In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs in user-centric paradigm are required to serve more users due to this multiple association scheme.The improvement of system performance may be limited by the improving load of BSs.In this letter,we develope an analytical framework for the load distribution of BSs in heterogeneous user-centric UDN.Based on open loop power control(OLPC),a user-centric scheme is considered in which the clustered serving BSs can provide given signal to interference plus noise ratio(SINR)for any typical user.As for any BS in different tiers,by leveraging stochastic geometry,we derive the Probability Mass Function(PMF)of the number of the served users,the Cumulative Distribution Function(CDF)of total power consumption,and the CDF bounds of downlink sum data rate.The accuracy of the theoretical analysis is validated by numerical simulations,and the effect the system parameters on the load of BSs is also presented.
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
基金supported by the National Natural Science Foundation of China under Grant 61933014 and Grant 62173243.
文摘This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.
基金Project supported by National High-Technology Research andDevelopment Program of China (Grant No .2002AA517020)
文摘Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.
文摘This paper outlines the achievements andexisting problems of the applications ofdistributed control systems (DCS) indomestic fossil power plants and sets forth itsviews on the future trend in the DCSapplications in fossil power plants and somecritical tasks the application fields of DCSare faced with.
文摘There is a danger of power generation efficiency decreasing due to voltage increase when clustered residential PV systems are grid-interconnected to a single distribution line. As a countermeasure, installation of the reactive power control of an inverter at each residence has been considered. However, there are not many types of inverters that can operate reactive power control because there are insufficient effects on a low voltage distribution line with low penetration PV with reactive power control. Therefore, it is necessary to consider how to increase generation efficiency with a lower number of inverters. In this paper, four Japanese standard distribution line structures, for example of a residential area on "C1", where 2,160 residential PV systems are grid-interconnected, are selected. The optimal setting of reactive power control at each residence is computed on the distribution lines with a greedy method.
基金This work has been partly supported by National Natural Science Foundation of China,National High Technology Research and Development Program of China (863 Program)
文摘Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.
基金supported in part by the US Office of Naval Research(N00014-16-1-312,N00014-18-1-2185)in part by the National Natural Science Foundation of China(61673347,U1609214,61751205)
文摘A microgrid is hard to control due to its reduced inertia and increased uncertainties. To overcome the challenges of microgrid control, advanced controllers need to be developed.In this paper, a distributed, two-level, communication-economic control scheme is presented for multiple-bus microgrids with each bus having multiple distributed generators(DGs) connected in parallel. The control objective of the upper level is to calculate the voltage references for one-bus subsystems. The objectives of the lower control level are to make the subsystems' bus voltages track the voltage references and to enhance load current sharing accuracy among the local DGs. Firstly, a distributed consensusbased power sharing algorithm is introduced to determine the power generations of the subsystems. Secondly, a discrete-time droop equation is used to adjust subsystem frequencies for voltage reference calculations. Finally, a Lyapunov-based decentralized control algorithm is designed for bus voltage regulation and proportional load current sharing. Extensive simulation studies with microgrid models of different levels of detail are performed to demonstrate the merits of the proposed control scheme.
基金supported Foundation of National Development and Reform Commission of China (No. 2040)
文摘Pressure ripples in electric power steering (EPS) systems can be caused by the phase lag between the driver s steering torque and steer angle, the nonlinear frictions, and the disturbances from road and sensor noise especially during high-frequency maneuvers. This paper investigates the use of the robust fuzzy control method for actively reducing pressure ripples for EPS systems. Remarkable progress on steering maneuverability is achieved. The EPS dynamics is described with an eight-order nonlinear state-space model and approximated by a Takagi-Sugeno (T-S) fuzzy model with time-varying delays and external disturbances. A stabilization approach is then presented for nonlinear time-delay systems through fuzzy state feedback controller in parallel distributed compensation (PDC) structure. The closed-loop stability conditions of EPS system with the fuzzy controller are parameterized in terms of the linear matrix inequality (LMI) problem. Simulations and experiments using the proposed robust fuzzy controller and traditional PID controller have been carried out for EPS systems. Both the simulation and experiment results show that the proposed fuzzy controller can reduce the torque ripples and allow us to have a good steering feeling and stable driving.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.
基金This work was supportedbytheNationalNaturalScienceFoundationofChina(No.60474051),theProgramforNewCenturyExcellentTalentsinUniversityofChina(NCET),andtheSpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(No.20020248028).
文摘A novel distributed model predictive control scheme based on dynamic integrated system optimization and parameter estimation (DISOPE) was proposed for nonlinear cascade systems under network environment. Under the distributed control structure, online optimization of the cascade system was composed of several cascaded agents that can cooperate and exchange information via network communication. By iterating on modified distributed linear optimal control problems on the basis of estimating parameters at every iteration the correct optimal control action of the nonlinear model predictive control problem of the cascade system could be obtained, assuming that the algorithm was convergent. This approach avoids solving the complex nonlinear optimization problem and significantly reduces the computational burden. The simulation results of the fossil fuel power unit are illustrated to verify the effectiveness and practicability of the proposed algorithm.
文摘Power systems are moving toward a low-carbon or carbon-neutral future where high penetration of renewables is expected.With conventional fossil-fueled synchronous generators in the transmission network being replaced by renewable energy generation which is highly distributed across the entire grid,new challenges are emerging to the control and stability of large-scale power systems.New analysis and control methods are needed for power systems to cope with the ongoing transformation.In the CSEE JPES forum,six leading experts were invited to deliver keynote speeches,and the participating researchers and professionals had extensive exchanges and discussions on the control and stability of power systems.Specifically,potential changes and challenges of power systems with high penetration of renewable energy generation were introduced and explained,and advanced control methods were proposed and analyzed for the transient stability enhancement of power grids.
文摘Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.