In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was...In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV volta...The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.展开更多
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ...An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.展开更多
To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great s...To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great significance. In this pa-per, a mathematical model for load capability online assessment of a distribution network is established, and a repeti-tive power flow calculation algorithm is proposed to solve the problem as well. With assessment on three levels: the entire distribution network, a sub-area of the network and a load bus, the security level of current operation mode and load transfer capability during outage are thus obtained. The results can provide guidelines for prevention control, as well as restoration control. Simulation results show that the method is simple, fast and can be applied to distribution networks belonged to any voltage level while taking into account all of the operation constraints.展开更多
Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)...Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030.展开更多
In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs...In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs in user-centric paradigm are required to serve more users due to this multiple association scheme.The improvement of system performance may be limited by the improving load of BSs.In this letter,we develope an analytical framework for the load distribution of BSs in heterogeneous user-centric UDN.Based on open loop power control(OLPC),a user-centric scheme is considered in which the clustered serving BSs can provide given signal to interference plus noise ratio(SINR)for any typical user.As for any BS in different tiers,by leveraging stochastic geometry,we derive the Probability Mass Function(PMF)of the number of the served users,the Cumulative Distribution Function(CDF)of total power consumption,and the CDF bounds of downlink sum data rate.The accuracy of the theoretical analysis is validated by numerical simulations,and the effect the system parameters on the load of BSs is also presented.展开更多
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration...Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.展开更多
This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, ...This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.展开更多
Since a load of power system changes continuously,the generation also adjusted for supply-demand balance purpose.If there exist more distributed generators in the distribution network,the dispatch strategy becomes mor...Since a load of power system changes continuously,the generation also adjusted for supply-demand balance purpose.If there exist more distributed generators in the distribution network,the dispatch strategy becomes more crucial.The possibility of having numerous controllable microgrids,diesel generator(DG)units and loads for microgrids(MGs)system requires an efficient dispatch strategy in order to balance supply demand for reducing the total cost of the integrated system.In this paper,a method for the dispatch of the distributed generator in distributed power systems has been proposed.The dispatch strategy is such that it keeps a flat voltage profile,reduces the network losses,increases the maximum loading and voltage security margin of the system.The procedure is based on the analysis of continuous power flow.The method is executed on a 34-bus test system.The MATLAB based PSAT packages are used for simulation purpose.展开更多
The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this...The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.展开更多
Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smar...Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.展开更多
According to the population, area and economy development of Shanghai City, this paper introduces the load forecast of the city and points out that the development of urban power network should adapt the development o...According to the population, area and economy development of Shanghai City, this paper introduces the load forecast of the city and points out that the development of urban power network should adapt the development of its economy. In this paper, the developing targets of Shanghai power network are also presented.展开更多
Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benef...Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.展开更多
基金Projects(70572090, 70373017) supported by the National Natural Science Foundation of China
文摘In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
文摘The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.
文摘An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable.
文摘To improve the security and reliability of a distribution network, several issues, such as influences of operation con-strains, real-time load margin calculation, and online security level evaluation, are with great significance. In this pa-per, a mathematical model for load capability online assessment of a distribution network is established, and a repeti-tive power flow calculation algorithm is proposed to solve the problem as well. With assessment on three levels: the entire distribution network, a sub-area of the network and a load bus, the security level of current operation mode and load transfer capability during outage are thus obtained. The results can provide guidelines for prevention control, as well as restoration control. Simulation results show that the method is simple, fast and can be applied to distribution networks belonged to any voltage level while taking into account all of the operation constraints.
基金the Ministry of Higher Education Malaysia,under the Fundamental Research Grant Scheme(FRGS Grant No.FRGS/1/2016/TK07/SEGI/02/1).
文摘Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030.
基金supported by National Natural Science Foundation of China (No. 61971161)Foundation of Science and Technology on Communication Networks Laboratory (No.6142104190410)Heilongjiang Touyan Team(No. HITTY20190009)
文摘In ultra-dense networks(UDN),multiple association can be regarded as a user-centric pattern in which a user can be served by multiple base stations(BSs).The data rate and quality of service can be improved.However,BSs in user-centric paradigm are required to serve more users due to this multiple association scheme.The improvement of system performance may be limited by the improving load of BSs.In this letter,we develope an analytical framework for the load distribution of BSs in heterogeneous user-centric UDN.Based on open loop power control(OLPC),a user-centric scheme is considered in which the clustered serving BSs can provide given signal to interference plus noise ratio(SINR)for any typical user.As for any BS in different tiers,by leveraging stochastic geometry,we derive the Probability Mass Function(PMF)of the number of the served users,the Cumulative Distribution Function(CDF)of total power consumption,and the CDF bounds of downlink sum data rate.The accuracy of the theoretical analysis is validated by numerical simulations,and the effect the system parameters on the load of BSs is also presented.
文摘Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm.
文摘This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.
文摘Since a load of power system changes continuously,the generation also adjusted for supply-demand balance purpose.If there exist more distributed generators in the distribution network,the dispatch strategy becomes more crucial.The possibility of having numerous controllable microgrids,diesel generator(DG)units and loads for microgrids(MGs)system requires an efficient dispatch strategy in order to balance supply demand for reducing the total cost of the integrated system.In this paper,a method for the dispatch of the distributed generator in distributed power systems has been proposed.The dispatch strategy is such that it keeps a flat voltage profile,reduces the network losses,increases the maximum loading and voltage security margin of the system.The procedure is based on the analysis of continuous power flow.The method is executed on a 34-bus test system.The MATLAB based PSAT packages are used for simulation purpose.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
基金The authors extend their appreciation to the Deputy ship for the Research&innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/18432).
文摘The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA27000000)。
文摘Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.
文摘According to the population, area and economy development of Shanghai City, this paper introduces the load forecast of the city and points out that the development of urban power network should adapt the development of its economy. In this paper, the developing targets of Shanghai power network are also presented.
基金supported by the State Grid Science and Technology Project, “Study on Multi-source and Multiload Coordination and Optimization Technology Considering Desalination of Sea Water” (No. SGTJDK00DWJS1800011)
文摘Traditional seawater desalination requires high amounts of energy, with correspondingly high costs and limited benefits, hindering wider applications of the process. To further improve the comprehensive economic benefits of seawater desalination, the desalination load can be combined with renewable energy sources such as solar energy, wind energy, and ocean energy or with the power grid to ensure its effective regulation. Utilizing energy internet(EI) technology, energy balance demand of the regional power grid, and coordinated control between coastal multi-source multi-load and regional distribution network with desalination load is reviewed herein. Several key technologies, including coordinated control of coastal multi-source multi-load system with seawater desalination load, flexible interaction between seawater desalination and regional distribution network, and combined control of coastal multi-source multi-load storage system with seawater desalination load, are discussed in detail. Adoption of the flexible interaction between seawater desalination and regional distribution networks is beneficial for solving water resource problems, improving the ability to dissipate distributed renewable energy, balancing and increasing grid loads, improving the safety and economy of coastal power grids, and achieving coordinated and comprehensive application of power grids, renewable energy sources, and coastal loads.