Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through se...Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through separate coaxial lines and coupled with the plasma through arrays of loop antennas. The parameters of the ICRH system, including the injected power and phasing between antenna straps, are critical to the coupling efficiency of the power as well as the resulting impact on the heating efficiency. In this paper, we present a system for feedback control of the phase between the current straps and the ICRH power on EAST. The feedback control system was tested using both a matched dummy load and a plasma load, and it successfully maintained stable operation in the 2016 EAST campaign. Good control of the injected power and wave phases was achieved during edgelocalized mode operation.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedbac...In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.展开更多
This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing ...This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the zero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.展开更多
The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control sy...The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.展开更多
An axisymmetric rigid plasma RZIP model for the EAST electromagnetic system is developed. Based on this model, the open loop vertical growth rates for various EAST equilibrium configurations generated by EFIT are calc...An axisymmetric rigid plasma RZIP model for the EAST electromagnetic system is developed. Based on this model, the open loop vertical growth rates for various EAST equilibrium configurations generated by EFIT are calculated and the closed loop stability is analyzed. The design of the PD (proportional and derivative) feedback controller and the requirement for the fast control power supply are also discussed.展开更多
将模块化多电平变流器(modular multilevel converter,MMC)投入到固态变压器(solid state transformer,SST)系统中时通常采用比例积分微分(proportional integral derivative,PID)控制方法,但这种策略存在参数选取繁杂、动态性能较差的...将模块化多电平变流器(modular multilevel converter,MMC)投入到固态变压器(solid state transformer,SST)系统中时通常采用比例积分微分(proportional integral derivative,PID)控制方法,但这种策略存在参数选取繁杂、动态性能较差的缺点。为了提高系统的动态性能并简化参数选取,提出了MMC-SST反馈线性化滑模控制策略。首先建立了MMC-SST整体仿真模型。然后建立了采用反馈线性化滑模控制的MMC-SST控制模型。最后利用MATLAB/Simulink平台将所提的控制方法与常规PID控制策略作了仿真比较,验证了所提反馈线性化滑模控制策略具备参数选择容易、动态性能优良的优势。展开更多
基金supported in part by the National Magnetic Confinement Fusion Science Program(No.2015GB101001)the National Natural Science Foundation of China(Nos.11375236 and11375235)
文摘Ion cyclotron wave resonance heating(ICRH) is one of the most important auxiliary methods to heat plasma in the Experimental Advanced Superconducting Tokamak(EAST). Several megawatts of power is transmitted through separate coaxial lines and coupled with the plasma through arrays of loop antennas. The parameters of the ICRH system, including the injected power and phasing between antenna straps, are critical to the coupling efficiency of the power as well as the resulting impact on the heating efficiency. In this paper, we present a system for feedback control of the phase between the current straps and the ICRH power on EAST. The feedback control system was tested using both a matched dummy load and a plasma load, and it successfully maintained stable operation in the 2016 EAST campaign. Good control of the injected power and wave phases was achieved during edgelocalized mode operation.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金supported by the National Natural Science Foundation of China (61073183)the Natural Science Foundation for the Youth of Heilongjiang Province (QC2012C070)
文摘In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
文摘This paper presents a novel transformer magnetic biasing control method for high-power high-performance AC power supplies. Serious consequences due to magnetic biasing and several methods to overcome magnetic biasing are first discussed. The causes of the transformer magnetic biasing are then analyzed in detail. The proposed method is based on a high-pass filter inserted in the forward path and the feedforward control. Without testing magnetic biasing of transformer, this method can eliminate magnetic biasing of transformer completely in real-time waveform feedback control systems though the zero error of the Hall effect sensors varies with time and temperature. The method has already been employed in a 90KVA AC power supply. It is shown that it offers improved performance over existing ones. In this method, no sensors are used such that the zero error of the Hall effect sensors has not any influence on the system. It is simple to design and implement. Furthermore, the method is suitable for various power applications.
基金supported in part by the ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)
文摘The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.
基金supported by the Key Project of Knowledge Innovation Program of Chinese Academy of Sciences(No.KJCX3.SYW.N4)National Natural Science Foundation of China(No.10835009)
文摘An axisymmetric rigid plasma RZIP model for the EAST electromagnetic system is developed. Based on this model, the open loop vertical growth rates for various EAST equilibrium configurations generated by EFIT are calculated and the closed loop stability is analyzed. The design of the PD (proportional and derivative) feedback controller and the requirement for the fast control power supply are also discussed.
文摘将模块化多电平变流器(modular multilevel converter,MMC)投入到固态变压器(solid state transformer,SST)系统中时通常采用比例积分微分(proportional integral derivative,PID)控制方法,但这种策略存在参数选取繁杂、动态性能较差的缺点。为了提高系统的动态性能并简化参数选取,提出了MMC-SST反馈线性化滑模控制策略。首先建立了MMC-SST整体仿真模型。然后建立了采用反馈线性化滑模控制的MMC-SST控制模型。最后利用MATLAB/Simulink平台将所提的控制方法与常规PID控制策略作了仿真比较,验证了所提反馈线性化滑模控制策略具备参数选择容易、动态性能优良的优势。