Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment an...Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment and production.In this study,a 3-D finite element (FE) method based on experimental verification was applied to calculate the magnetic flux density (Bz).The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated.The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location.The induction coil with racetrack section can induce greater Bz,and a larger gap between the induction coil and the shield ring increases Bz.The mechanism for this effect is also discussed.展开更多
Abstract Objective Higher levels of exposure to extremely low-frequency magnetic fields (ELF-MF) are associated with a slightly increased risk of childhood leukaemia. Compared with more-developed Western countries, ...Abstract Objective Higher levels of exposure to extremely low-frequency magnetic fields (ELF-MF) are associated with a slightly increased risk of childhood leukaemia. Compared with more-developed Western countries, higher exposure levels are evident in the Czech Republic, probably because of the different types of housing. In light of this, we aimed to examine the association between ELF-MF exposure and childhood leukaemia in the Czech Republic. Methods We conducted a paired case-control study. The cases (children with leukaemia) were age- sex- and permanent residence-matched to controls (children without leukaemia). Although this limited potential bias and confounding, it also limited our number of participants. Results The matched analyses included 79 case-control pairs. No significant association between ELF-MF exposure and childhood leukaemia was observed for exposures over 0.2 μT (odds ratio [0R]=0.93, confidence interval [Cl]=0.45-1.93), 0.3 μT (0R=0.77, Cl=0.34-1.75), or 0.4 μT (OR=0.9, Cl=0.37-2.22). Conclusion Despite higher levels of exposure in Middle and Eastern Europe, no indication of an association between ELF-MF exposure and childhood leukaemia was determined. This in contrast to the findings of previous studies conducted in different countries.展开更多
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying ...The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T-15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant.展开更多
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the...Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.展开更多
与传统接触式充电方式相比,采用感应式电能传输IPT(inductive power transfer)系统给自主水下航行器AUVs(autonomous underwater vehicles)充电更加方便和安全。为了解决AUV船体中心磁场强和由波浪引起的旋转偏移导致传输功率剧烈波动...与传统接触式充电方式相比,采用感应式电能传输IPT(inductive power transfer)系统给自主水下航行器AUVs(autonomous underwater vehicles)充电更加方便和安全。为了解决AUV船体中心磁场强和由波浪引起的旋转偏移导致传输功率剧烈波动的问题,提出1种具有新型耦合结构的三相IPT系统。耦合器由3个发射线圈和4个反向交替串联的接收线圈组成,该结构有利于抑制中心磁场并提高抗旋转偏移性能。Maxwell仿真结果表明,在船体旋转时,等效互感Meq波动小于2%,同时AUV中心磁场始终保持在较低水平。此外,为简化系统分析,采用1种无源元件解耦的方法对3个发射线圈进行解耦。搭建了1台基于LCC-S补偿拓扑的实验样机来验证系统的可行性,实验结果表明,当AUV旋转时,传输功率为536~595 W,最大波动率为9.91%,系统直-直最高效率为86.28%。展开更多
基金financially supported by the National Basic Research Program of China (Grant No.2011CB605504)
文摘Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment and production.In this study,a 3-D finite element (FE) method based on experimental verification was applied to calculate the magnetic flux density (Bz).The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated.The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location.The induction coil with racetrack section can induce greater Bz,and a larger gap between the induction coil and the shield ring increases Bz.The mechanism for this effect is also discussed.
文摘Abstract Objective Higher levels of exposure to extremely low-frequency magnetic fields (ELF-MF) are associated with a slightly increased risk of childhood leukaemia. Compared with more-developed Western countries, higher exposure levels are evident in the Czech Republic, probably because of the different types of housing. In light of this, we aimed to examine the association between ELF-MF exposure and childhood leukaemia in the Czech Republic. Methods We conducted a paired case-control study. The cases (children with leukaemia) were age- sex- and permanent residence-matched to controls (children without leukaemia). Although this limited potential bias and confounding, it also limited our number of participants. Results The matched analyses included 79 case-control pairs. No significant association between ELF-MF exposure and childhood leukaemia was observed for exposures over 0.2 μT (odds ratio [0R]=0.93, confidence interval [Cl]=0.45-1.93), 0.3 μT (0R=0.77, Cl=0.34-1.75), or 0.4 μT (OR=0.9, Cl=0.37-2.22). Conclusion Despite higher levels of exposure in Middle and Eastern Europe, no indication of an association between ELF-MF exposure and childhood leukaemia was determined. This in contrast to the findings of previous studies conducted in different countries.
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
基金The project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Nuclear Researchers Exchange Program of Japan
文摘The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T-15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant.
基金This work was supported by Natural Science Foundation of China(Item number:51777060,U1361109)Natural Science Foundation of Henan province(Item number:162300410117)the he innovative research team plan of Henan Polytechnic University(Item number:T2015-2).
文摘Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.