To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-base...To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.展开更多
The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seapor...The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.展开更多
Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper...Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.展开更多
An $ 80 million contract was clinched on March 14, 1996 for Japanese Mitsui & Co Ltd to provide generating equipment for the Qitaihe Power Plant in Northeast Heilongjiang Province. The deal was signed in Beijing b...An $ 80 million contract was clinched on March 14, 1996 for Japanese Mitsui & Co Ltd to provide generating equipment for the Qitaihe Power Plant in Northeast Heilongjiang Province. The deal was signed in Beijing by the China National Technical Import and Export Corp. (CNTIC), China Electrical Power Technology Import and Export Corp, Heilongiiang Electrical Power Corp and Mitsui. Under the contract, the Qitaihe Power Plant will import two 350 MW generating units from Mitsui, of which the generators will展开更多
Pulp and papermaking industries generate high volumes of carbohydrate-rich effluents. Microbial fuel cell(MFC) technology is based on organic materials' consumption and efficient power production. Using a classica...Pulp and papermaking industries generate high volumes of carbohydrate-rich effluents. Microbial fuel cell(MFC) technology is based on organic materials' consumption and efficient power production. Using a classical two-chamber lab-scale MFC design with an external resistance of2000 W, we investigated the effects of anode chamber biofilm adaptation(ACBA) and cathode chamber redox solutions(CCRS) on the operation efficiency of MFC when treating wastewater. In ACBA studies, biofilm growth activation showed an increase in the power density to 20.48, 35.18, and36.98 mW/m^2 when the acetate feeding concentrations were 3, 6, and 12 g/L,respectively. Improvement by biofilm adhesion on granular activated carbon(GAC) was examined by scanning electron microscopy(SEM). The obtained power density increased to 25.47, 33.42, and 40.39 mW/m^2 when the GAC particles concentrations were 0, 50, and 100 g/L, respectively. The generated power densities were 51.26 and 40.39 mW/m^2 as well as the obtained voltages were 0.41 and 0.72 V when the electrode area increased from 16 to 64 cm^2,respectively. Using the MFC optimized parameters, CCRS studies carried out using five different cathodic redox solutions. The results revealed that the use of manganese dioxide dissolved in hydrochloric acid generated the maximum power density of 112.6 mW/m^2, current density of 0.094 A/m^2, and voltage of1.20 V with a successful organic removal efficiency of 86.0% after 264 h of operation.展开更多
Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{...Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{equilibrium\} potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs.the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E_0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.展开更多
Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric whee...Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric wheelchairs, electric trolleybuses, medical carts, military engines, personal sports craft, mobility devices and other self propelled equipment. Up to now, many researches have focused on the development of the power module in the Fuel cell vehicles (FCVs) and the components of these systems such as membranes, bipolar plates, and electrodes. However, our work in this study focuses on operating the integrated fuel cell power module system efficiently for various operating conditions such as pressure, relative humidity and operating modes. In our validation we have utilized PEMFC single cell, with active area geometry 16 cm2 and of 120 cm2. Some results obtained in our study shown significant performance indicators for PEMFC stack (composed of 2 cells and 4 cells in a series) at different humidification levels.展开更多
A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance o...A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.展开更多
In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the coolin...In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.展开更多
The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles...The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices(EEDs) applied in vehicles are usually directly connected with the vehicle's battery.With increasing numbers of EEDs being applied in traditional fuel vehicles,vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively.In this paper,a new vehicle electrical power supply system for traditional fuel vehicles,which accounts for all electrical/electronic devices and complex work conditions,is proposed based on a smart electrical/electronic device(SEED) system.Working as an independent intelligent electrical power supply network,the proposed system is isolated from the electrical control module and communication network,and access to the vehicle system is made through a bus interface.This results in a clean controller power supply with no electromagnetic interference.A new practical battery state of charge(So C) estimation method is also proposed to achieve more accurate So C estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel.Optimized protection methods are also used to ensure power supply safety.Experiments and tests on a traditional fuel vehicle are performed,and the results reveal that the battery So C is calculated quickly and sufficiently accurately for battery over-discharge protection.Over-current protection is achieved,and the entire vehicle's power utilization is optimized.For traditional fuel vehicles,the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture,enhancing system reliability and security.展开更多
There is an obvious effort to increase the burn up of used fuel assemblies in order to improve fuel utilization.A more effective operation can be realized by extending the fuel cycles or by increasing the number of re...There is an obvious effort to increase the burn up of used fuel assemblies in order to improve fuel utilization.A more effective operation can be realized by extending the fuel cycles or by increasing the number of reloadings.This change is nevertheless connected with increasing the uranium enrichment even above 5% of 235U. Burnable absorbers are widely used to compensate for the positive reactivity of fresh fuel. With proper optimization, burnable absorbers decrease the reactivity excess at the beginning of the cycle, and they can help with stabilization of power distribution. This paper describes properties of several materials that can be used as burnable absorbers. The change in concentration or position of the pin with a burnable absorber in a fuel assembly was analyzed by the HELIOS transport lattice code. The multiplication factor and power peaking factor dependence on fuel burn up were used to evaluate the neutronic properties of burnable absorbers. The following four different materials are discussed in this paper: Gd2O3, IFBA, Er2O3,and Dy2O3.Gadolinium had the greatest influence on fuel characteristics. The number of pins with a burnable absorber was limited in the VVER-440 fuel assembly to six. In the VVER-1000 fuel assembly, 36 pins with a burnable absorber can be used as the assembly is larger. The erbium depletion rate was comparable with uranium burn up.Dysprosium had the largest parasitic absorption after depletion.展开更多
Various types of energy exist everywhere around us,and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products.In this work,we proposed a hybri...Various types of energy exist everywhere around us,and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products.In this work,we proposed a hybrid energy-harvesting system(HEHS)for potential in vivo applications.The HEHS consisted of a triboelectric nanogenerator and a glucose fuel cell for simultaneously harvesting biomechanical energy and biochemical energy in simulated body fluid.These two energy-harvesting units can work individually as a single power source or work simultaneously as an integrated system.This design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output.Compared with any individual device,the integrated HEHS outputs a superimposed current and has a faster charging rate.Using the harvested energy,HEHS can power a calculator or a green light-emitting diode pattern.Considering the widely existed biomechanical energy and glucose molecules in the body,the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.展开更多
文摘To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.
文摘The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.
文摘Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.
文摘An $ 80 million contract was clinched on March 14, 1996 for Japanese Mitsui & Co Ltd to provide generating equipment for the Qitaihe Power Plant in Northeast Heilongjiang Province. The deal was signed in Beijing by the China National Technical Import and Export Corp. (CNTIC), China Electrical Power Technology Import and Export Corp, Heilongiiang Electrical Power Corp and Mitsui. Under the contract, the Qitaihe Power Plant will import two 350 MW generating units from Mitsui, of which the generators will
基金funded by the China Science and Technology Exchange Center(Grant No.2016YFE0114700)
文摘Pulp and papermaking industries generate high volumes of carbohydrate-rich effluents. Microbial fuel cell(MFC) technology is based on organic materials' consumption and efficient power production. Using a classical two-chamber lab-scale MFC design with an external resistance of2000 W, we investigated the effects of anode chamber biofilm adaptation(ACBA) and cathode chamber redox solutions(CCRS) on the operation efficiency of MFC when treating wastewater. In ACBA studies, biofilm growth activation showed an increase in the power density to 20.48, 35.18, and36.98 mW/m^2 when the acetate feeding concentrations were 3, 6, and 12 g/L,respectively. Improvement by biofilm adhesion on granular activated carbon(GAC) was examined by scanning electron microscopy(SEM). The obtained power density increased to 25.47, 33.42, and 40.39 mW/m^2 when the GAC particles concentrations were 0, 50, and 100 g/L, respectively. The generated power densities were 51.26 and 40.39 mW/m^2 as well as the obtained voltages were 0.41 and 0.72 V when the electrode area increased from 16 to 64 cm^2,respectively. Using the MFC optimized parameters, CCRS studies carried out using five different cathodic redox solutions. The results revealed that the use of manganese dioxide dissolved in hydrochloric acid generated the maximum power density of 112.6 mW/m^2, current density of 0.094 A/m^2, and voltage of1.20 V with a successful organic removal efficiency of 86.0% after 264 h of operation.
基金Supported by EPSRC Funds(No.GR/ R5 0 4 17) and an EPSRC/ HEFCF J.I.F Award(No.JIF4 NESCEQ )
文摘Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{equilibrium\} potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs.the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E_0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.
基金The Center for Renewable Energies Development (CDER)The General Directorate for Scientific Research and Tech- nological Development (DG-RSDT)+1 种基金The Na- tional Observatory of the Environment and the Durable Development (ONEDD)The Ministry of Town and Country Planning and the Environment
文摘Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric wheelchairs, electric trolleybuses, medical carts, military engines, personal sports craft, mobility devices and other self propelled equipment. Up to now, many researches have focused on the development of the power module in the Fuel cell vehicles (FCVs) and the components of these systems such as membranes, bipolar plates, and electrodes. However, our work in this study focuses on operating the integrated fuel cell power module system efficiently for various operating conditions such as pressure, relative humidity and operating modes. In our validation we have utilized PEMFC single cell, with active area geometry 16 cm2 and of 120 cm2. Some results obtained in our study shown significant performance indicators for PEMFC stack (composed of 2 cells and 4 cells in a series) at different humidification levels.
基金AVL LIST GM BH(A-8020 Graz,Hans-List-Platz 1)for its funding
文摘A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.
基金Supported by the Ministry of the Environment, Climate Protection and the Energy Sector, Baden-Wuettermberg
文摘In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel. A model mixture consisting of 80% n-hexadecane and 20%..!-methylnaphthalin is used to simulate the commercial diesel. The modelling consists of several steps. First, equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to car- bon (O/C) ratio, fuel utilization ratio and anode gas recirculation. Second, product composition, especially methane content, is determined for the me.th.an, ation process at the operating temperatures ra:ng!ng from 500 ℃to 520 ℃.Finally, the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate. The results show that the first concept, operating the diesel reformer at low O/C ratio and/or, recirculation rat!o, is not realizable due to high probability of coke formation, whereas the second concept, combining a methanation process with CPOX, can provide a significant cool- ing effect in addition to the conventional c?oling concept which needs higher levels of excess air.
基金Supported by Collaborative Innovation Center of Intelligent New Energy Vehicle of U.S.and China-Clean Energy Research Center,Fund of China Scholarship Council(Grant No.201406215015)
文摘The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices(EEDs) applied in vehicles are usually directly connected with the vehicle's battery.With increasing numbers of EEDs being applied in traditional fuel vehicles,vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively.In this paper,a new vehicle electrical power supply system for traditional fuel vehicles,which accounts for all electrical/electronic devices and complex work conditions,is proposed based on a smart electrical/electronic device(SEED) system.Working as an independent intelligent electrical power supply network,the proposed system is isolated from the electrical control module and communication network,and access to the vehicle system is made through a bus interface.This results in a clean controller power supply with no electromagnetic interference.A new practical battery state of charge(So C) estimation method is also proposed to achieve more accurate So C estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel.Optimized protection methods are also used to ensure power supply safety.Experiments and tests on a traditional fuel vehicle are performed,and the results reveal that the battery So C is calculated quickly and sufficiently accurately for battery over-discharge protection.Over-current protection is achieved,and the entire vehicle's power utilization is optimized.For traditional fuel vehicles,the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture,enhancing system reliability and security.
基金supported by the Technology Agency of the Czech Republic(No.TE01020455)
文摘There is an obvious effort to increase the burn up of used fuel assemblies in order to improve fuel utilization.A more effective operation can be realized by extending the fuel cycles or by increasing the number of reloadings.This change is nevertheless connected with increasing the uranium enrichment even above 5% of 235U. Burnable absorbers are widely used to compensate for the positive reactivity of fresh fuel. With proper optimization, burnable absorbers decrease the reactivity excess at the beginning of the cycle, and they can help with stabilization of power distribution. This paper describes properties of several materials that can be used as burnable absorbers. The change in concentration or position of the pin with a burnable absorber in a fuel assembly was analyzed by the HELIOS transport lattice code. The multiplication factor and power peaking factor dependence on fuel burn up were used to evaluate the neutronic properties of burnable absorbers. The following four different materials are discussed in this paper: Gd2O3, IFBA, Er2O3,and Dy2O3.Gadolinium had the greatest influence on fuel characteristics. The number of pins with a burnable absorber was limited in the VVER-440 fuel assembly to six. In the VVER-1000 fuel assembly, 36 pins with a burnable absorber can be used as the assembly is larger. The erbium depletion rate was comparable with uranium burn up.Dysprosium had the largest parasitic absorption after depletion.
基金support of National Key R&D Project from Minister of Science and Technology,China(2016YFA0202703)National Natural Science Foundation of China(Nos.61875015,31571006,81601629,21801019,and 11421202)+3 种基金the 111 Project(Project No.B13003)the Beijing Natural Science Foundation(2182091)Wuhan Municipal Science and Technology Bureau(Grant No.2017060201010166)the National Youth Talent Support Program
文摘Various types of energy exist everywhere around us,and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products.In this work,we proposed a hybrid energy-harvesting system(HEHS)for potential in vivo applications.The HEHS consisted of a triboelectric nanogenerator and a glucose fuel cell for simultaneously harvesting biomechanical energy and biochemical energy in simulated body fluid.These two energy-harvesting units can work individually as a single power source or work simultaneously as an integrated system.This design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output.Compared with any individual device,the integrated HEHS outputs a superimposed current and has a faster charging rate.Using the harvested energy,HEHS can power a calculator or a green light-emitting diode pattern.Considering the widely existed biomechanical energy and glucose molecules in the body,the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.