Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining co...Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.展开更多
Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landf...Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landfill, supplemented by burning. However, with the accelerated process of urbanization, land resources are increasingly strained and most large cities have been unable to find a suitable landfill within the feasible urban extent, the main equipment for the incinerator and the localization of the overall process greatly reduced its capital investment and these factors will promote the rapid development of waste incineration power generation industry. Waste incineration and power generation technology has the dual benefits of environmental protection and energy and it is the development direction of waste disposal in the future. According to the condition that our country's waste incineration power generation started from scratch and developed rapidly in recent years ,there is a introduction about the application of the waste incineration and a brief analysis of the its obstacles in the promotion and financing, as well as the potential for future applications.展开更多
With the rapid development of economy, the scale of city has become more and more large. Meanwhile, the population also grows rapidly. Although the standard of living condition has been improved greatly, industry and ...With the rapid development of economy, the scale of city has become more and more large. Meanwhile, the population also grows rapidly. Although the standard of living condition has been improved greatly, industry and domestic waste not only infl uence the quality of life by polluting the environment, but also become a signifi cant obstacle factor for economic development. waste power generation or waste-to-energy(WTE) is using the heat which is from garbage incinerator to generate electricity. This method can solve the problem of waste and generate the social benefi t, but by using the power on the internet to generate the economy benefit. In this paper, combined the method of FAHP and TOPSIS, a quotas system is set up to evaluate the social and economic benefi ts of the WTE project in Xiamen. Some advice is proposed for the Xiamen WTE project.展开更多
The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to...The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.展开更多
Chinese government has initiated many preferential policies for supporting the circular economy, including the industry of municipal solid waste (MSW) power generation. This paper collects relevant policies for Chin...Chinese government has initiated many preferential policies for supporting the circular economy, including the industry of municipal solid waste (MSW) power generation. This paper collects relevant policies for China's MSW power generation. It also analyzes the overall environment of policies for the MSW power generation from three aspects---the basic principles for China to develop MSW power generation, the operating mechanism and the specific preferential policies. The analysis establishes foundation for further research toward policy integration.展开更多
Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the curr...Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the current low prices of fuel, residents and businesses in the United States pay a significant price for their utilities, if not higher than most other countries in the world. Emissions from the evaporation and combustion of these traditional fossil fuels contribute to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and much alternative energy are being developed based on solar, wind, biomass, hydropower, fuel cell, geothermal, etc. A new alternative hydrocarbon fuel which is produced from waste plastics can be used with compatble power plants and generators appliances to produce electricity that can be supplied into homes, businesses, power grids and other sectors.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
Numan is an urban center in Adamawa State North-Eastern Nigeria. Its waste characteristics are similar to other places in sub-Saharan Africa. In this paper, the physico-chemical characterization of municipal solid was...Numan is an urban center in Adamawa State North-Eastern Nigeria. Its waste characteristics are similar to other places in sub-Saharan Africa. In this paper, the physico-chemical characterization of municipal solid waste generated in Numan Town was carried out to estimate the electrical power to be generated from it. The solid waste types were observed to comprise of polythene (27%), organic waste (24.1%), plastic (10.2%), textile (13.2%), paper (9.8%), glass (9.3%) and metals (6.4%). The moisture content as discarded and daily average solid waste generation rate are 16.49% and 0.583 kg/sec respectively. The chemical formula with and without water was determined as C923.28H1632.60O258.28N12.89S and C923.28H2099.70O494.16N12.89S respectively. The suitability of the municipal solid waste as a possible source of electrical power was also considered. The energy content of the solid waste on ash free dry-basis was determined as 20861.48 kJ/kg. The estimated power generation per day using incinerating plant at an assumed efficiency of 25% was 3031.5 kW.展开更多
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i...The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.展开更多
The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts...The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.展开更多
The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via...The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process.In principle,any chemicals that can be converted to ions can be used for nanofluidic power generation.In this work,we demonstrate the power generation from the diffusion of CO_(2) into air using nanofluidic cellulose membranes.By dissolving CO_(2) in water,a power density of 87 mW/m^(2) can be achieved.Using monoethanolamine solutions to dissolve CO_(2),the power density can be increased to 2.6 W/m^(2).We further demonstrate that the waste heat released in industrial and carbon capture processes,can be simultaneously harvested with our nanofluidic membranes,increasing the power density up to 16 W/m^(2) under a temperature difference of 30°C.Therefore,our work should expand the application scope of nanofluidic osmotic power generation and contribute to carbon utilization and capture technologies.展开更多
The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consi...The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consideration can be made by energy self-sufficient when all fish waste oil is processed into biodiesel and further converted to electricity and heat (for cooling) in a CHP (combined heat and power) unit. The purpose of the present paper is to discuss the profitability of such plants in southeast Asia. The economic model shows that electricity production is, due to the low electricity tariff, uneconomical (except during electricity blackout), even if cogeneration heat can be utilized. This prompt a design of the plant whereby the necessary heat for the biodiesel process is taken from the waste heat produced by the compressors of a CO2 cooling system. According to the calculations and assumptions of the present study, the profitability of biodiesel production from fish cleaning wastes in Vietnam depends strongly on the market prices for fish waste and fish oil. Different business case scenarios are described.展开更多
文摘Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.
文摘Development space of the waste incineration power generation is expanding. According to the technical route of previous planning and related policies, the principles of our garbage disposal are based on sanitary landfill, supplemented by burning. However, with the accelerated process of urbanization, land resources are increasingly strained and most large cities have been unable to find a suitable landfill within the feasible urban extent, the main equipment for the incinerator and the localization of the overall process greatly reduced its capital investment and these factors will promote the rapid development of waste incineration power generation industry. Waste incineration and power generation technology has the dual benefits of environmental protection and energy and it is the development direction of waste disposal in the future. According to the condition that our country's waste incineration power generation started from scratch and developed rapidly in recent years ,there is a introduction about the application of the waste incineration and a brief analysis of the its obstacles in the promotion and financing, as well as the potential for future applications.
文摘With the rapid development of economy, the scale of city has become more and more large. Meanwhile, the population also grows rapidly. Although the standard of living condition has been improved greatly, industry and domestic waste not only infl uence the quality of life by polluting the environment, but also become a signifi cant obstacle factor for economic development. waste power generation or waste-to-energy(WTE) is using the heat which is from garbage incinerator to generate electricity. This method can solve the problem of waste and generate the social benefi t, but by using the power on the internet to generate the economy benefit. In this paper, combined the method of FAHP and TOPSIS, a quotas system is set up to evaluate the social and economic benefi ts of the WTE project in Xiamen. Some advice is proposed for the Xiamen WTE project.
文摘The proper terminal disposal of organic solid waste such as domestic waste is a worldwide issue.Landfill covers a large area,with limited capacity,and a single landfill will be filled one day;incineration is costly to build and operate.These methods all need to transfer and centralized treatment,and secondary pollution is difficult to control,against the purification law of the nature."NIMBY effect"is very serious,and the social cost of treatment is increasing,becoming a heavy financial burden."The Distributed Waste Pyrolysis Cold Emission Energy Station"developed by Hunan Zhongzhou Energy-Saving Technology Co.,Ltd.overcomes these disadvantages and constructs a more appropriate environmental economic industrial chain for the treatment of organic solid waste such as urban and rural household waste.Based on its technical characteristics,this paper compares it with waste incineration power generation project in the aspects of secondary pollution control,treatment effect,energy utilization,investment and operation economy,etc.
文摘Chinese government has initiated many preferential policies for supporting the circular economy, including the industry of municipal solid waste (MSW) power generation. This paper collects relevant policies for China's MSW power generation. It also analyzes the overall environment of policies for the MSW power generation from three aspects---the basic principles for China to develop MSW power generation, the operating mechanism and the specific preferential policies. The analysis establishes foundation for further research toward policy integration.
文摘Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the current low prices of fuel, residents and businesses in the United States pay a significant price for their utilities, if not higher than most other countries in the world. Emissions from the evaporation and combustion of these traditional fossil fuels contribute to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and much alternative energy are being developed based on solar, wind, biomass, hydropower, fuel cell, geothermal, etc. A new alternative hydrocarbon fuel which is produced from waste plastics can be used with compatble power plants and generators appliances to produce electricity that can be supplied into homes, businesses, power grids and other sectors.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
文摘Numan is an urban center in Adamawa State North-Eastern Nigeria. Its waste characteristics are similar to other places in sub-Saharan Africa. In this paper, the physico-chemical characterization of municipal solid waste generated in Numan Town was carried out to estimate the electrical power to be generated from it. The solid waste types were observed to comprise of polythene (27%), organic waste (24.1%), plastic (10.2%), textile (13.2%), paper (9.8%), glass (9.3%) and metals (6.4%). The moisture content as discarded and daily average solid waste generation rate are 16.49% and 0.583 kg/sec respectively. The chemical formula with and without water was determined as C923.28H1632.60O258.28N12.89S and C923.28H2099.70O494.16N12.89S respectively. The suitability of the municipal solid waste as a possible source of electrical power was also considered. The energy content of the solid waste on ash free dry-basis was determined as 20861.48 kJ/kg. The estimated power generation per day using incinerating plant at an assumed efficiency of 25% was 3031.5 kW.
文摘The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.
文摘The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.
基金National Natural Science Foundation of China(22272194)Key R&D Projects of Shandong Province(2022CXGC010302)+1 种基金Shandong Provincial Natural Science Foundation(ZR2021YQ12)Shandong Energy Institute(SEI202124).
文摘The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process.In principle,any chemicals that can be converted to ions can be used for nanofluidic power generation.In this work,we demonstrate the power generation from the diffusion of CO_(2) into air using nanofluidic cellulose membranes.By dissolving CO_(2) in water,a power density of 87 mW/m^(2) can be achieved.Using monoethanolamine solutions to dissolve CO_(2),the power density can be increased to 2.6 W/m^(2).We further demonstrate that the waste heat released in industrial and carbon capture processes,can be simultaneously harvested with our nanofluidic membranes,increasing the power density up to 16 W/m^(2) under a temperature difference of 30°C.Therefore,our work should expand the application scope of nanofluidic osmotic power generation and contribute to carbon utilization and capture technologies.
文摘The European Union Framework Programme 71 Enerfish project aims to demonstrate a new poly-generation application with renewable energy sources for the fishery industry in Vietnam. The fish processing plant under consideration can be made by energy self-sufficient when all fish waste oil is processed into biodiesel and further converted to electricity and heat (for cooling) in a CHP (combined heat and power) unit. The purpose of the present paper is to discuss the profitability of such plants in southeast Asia. The economic model shows that electricity production is, due to the low electricity tariff, uneconomical (except during electricity blackout), even if cogeneration heat can be utilized. This prompt a design of the plant whereby the necessary heat for the biodiesel process is taken from the waste heat produced by the compressors of a CO2 cooling system. According to the calculations and assumptions of the present study, the profitability of biodiesel production from fish cleaning wastes in Vietnam depends strongly on the market prices for fish waste and fish oil. Different business case scenarios are described.