A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power gener...A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power generator is affected by many factors, among which the load coefficient k is of great importance. This paper reveals the effect of some system parameters on the performance by three-dimensional (3D) numerical simulation for a Faraday type MHD power generator using He/Xe as working plasma. The results show that average electrical conductivity increases first and then decreases with the addition of magnetic field intensity. Electrical conductivity reaches the maximum value of 11.05 S/m, while the applied magnetic field strength is B = 1.75 T. When B 〉 3 T, the ionization rate along the midline well keeps stable, which indicates that the ionization rate and three-body recombination rate (three kinds of particles combining to two kinds of particles) are approximately equal, and the relatively stable plasma structure of the mainstream is preserved. Efficiency of power generation of the Faraday type channel increases with an increment of the load factor. However, enthalpy extraction first increases to a certain value, and then decreases with the load factor. The enthalpy extraction rate reaches the maximum when the load coefficient k equals 0.625, which is the best performance of the power generator channel with the maximum electricity production.展开更多
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp...Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.展开更多
The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen e...The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen electrolytic cell equipped with an electrostatic-induction potential-superposed water electrolytic cell that provides a stoichiometric H2-O2 fuel mixture during operation of the vehicle. This generator functions with zero power input, zero matter input and zero emission due to the so-called "zero power input" electrostatic-to-chemical energy conversion occurring in the electrolytic cell. Here, theoretical simulations were performed to verify the target performance of such generators, assuming a pair of FC (fuel cell) and electrolytic cell stacks, both of which are commercially available.展开更多
Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami...Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.展开更多
Polluted populations of Euphorbia heterophylla, Chromolaena odorata, Commelina diffusa and Kyllinga pumila were collected fresh from 0.1 m to 0.25 m radii of the exhausted-pipe of power generators used for domestic pu...Polluted populations of Euphorbia heterophylla, Chromolaena odorata, Commelina diffusa and Kyllinga pumila were collected fresh from 0.1 m to 0.25 m radii of the exhausted-pipe of power generators used for domestic purposes, whereas, their non-polluted counterparts were collected from distances of 100-110 m away. The length and width of 10 leaves, each of both polluted and non-polluted populations, were measured. Their average leaf areas (LA) were 2.60 ± 0.1 cm2, 14.16 ±0.4 cm2, 5.19 ± 0.8 cm2 and 1.80 ±0.8 cm2 for the polluted populations of each of the species, respectively. Whereas, the LA of their non-polluted counterparts were 4.18±0.7 cm2, 34.39 ±0.2 cm2, 7.51± 0.1 cm2 and 10.76 ± 0.3 cm2, respectively. Damages such as plugged stomatal pores, epidermal cell aberrations and erosion, ruptured stomatal ledges, occasional leaf perforations, irregularly fused cell boundaries and glued leaf surfaces were noticeable in the leaves of the polluted populations. Such were not observed in the non-polluted populations. It was suggested that foliar morphology of these group of plants could serve as phytometer to gauge the threats of power generators used in homes to terrestrial ecosystem.展开更多
We show a conceptual structure for a wave energy converter,which features a direct‐drive linear power generator with REBaCuO high‐temperature superconducting(HTS)bulk field poles and driven by a heaving buoy.A dual ...We show a conceptual structure for a wave energy converter,which features a direct‐drive linear power generator with REBaCuO high‐temperature superconducting(HTS)bulk field poles and driven by a heaving buoy.A dual translator power generation system of the proposed concept structure is a linear generator in which both the HTS bulks and armature copper coils move in opposite directions simultaneously.A performance analysis of our linear generator was conducted using a finite‐element electromagnetic field analysis method.The results of the analysis were compared between the HTS dual translator linear power generator and the HTS single translator linear power generator.The maximum electromagnetic force and the average output power of the HTS dual translator are around 5%and 11%higher than that of the HTS single translator.We further present the results of the analysis regarding the influence of reducing the stroke length of the linear generator translator on the output power,where the output power for the HTS dual translator system increased up to a factor of two,in comparison to the HTS single translator counterpart,for the same reduction of stroke length.展开更多
China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges ...China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.展开更多
According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is es...According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is established and a new adaptive robust guaranteed cost controller (AGCC) is proposed in this paper. First, the uncertain parameters of the system are estimated by using the adaptive method, then the estimated uncertain parameters and robust guaranteed cost control method are used to design a state feedback controller. The controller s feedback gain is obtained by solving a set of linear matrix inequality (LMI) constraints, such that the controller can meet a quadratic performance evaluation criterion. The simulation results show that we can realize the goal of maximum wind energy capture in low wind speed by the optimal torque control and constant power control in high wind speed by variable pitch control with good dynamic characteristics, robustness and the ability of suppressing disturbance.展开更多
As the size of the electronic system continuously reduces, characteristics of small volume, light weight, high energy it is very important to develop micro power generator, which has density and continuous energy supp...As the size of the electronic system continuously reduces, characteristics of small volume, light weight, high energy it is very important to develop micro power generator, which has density and continuous energy supplying. Vibration energy exists widely in daily environment. Micro vibration power generator can harvest and exchange the vibration energy to the electrical energy. Micro electret power generator is one kind of the power generators for harvesting vibration energy and has been paid much attention by researchers. This paper describes the development and status of micro electret power generators, including electret materials and charging methods, vibration energy harvesting structures and conversion efficiency improvement.展开更多
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem....The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.展开更多
This paper presents the concept of a Dielectric-lined Multiwave Cerenkov Generator producing high power millimeter waves, which has been investigated with a two and onehalf dimensional electromagnetic relativistic Par...This paper presents the concept of a Dielectric-lined Multiwave Cerenkov Generator producing high power millimeter waves, which has been investigated with a two and onehalf dimensional electromagnetic relativistic Particle-in-Cell (PIC) plasma simulation code. Themodified device can operate in a lower diode-voltage regime with much higher radiation efficiencyand slight downshift of operation frequency. There exist the optima for the permittivity of thedielectric liner and for the magnitude of the guiding magnetic field. The required intensity of theguiding field is reduced by the introduction of the liner. The enhanced propagation of the electronbeam is studied in the presence of the liner.展开更多
Photovoltaic power generating is one of the primary methods of utilizing solar energy resources,with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy....Photovoltaic power generating is one of the primary methods of utilizing solar energy resources,with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy.In order to provide reference strategies for pertinent researchers as well as potential implementation,this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches,statistical approaches and optimization techniques for solar power generation and forecasting.Deep learning-related methods,in particular,can theoretically handle arbitrary nonlinear transformations through proper model structural design,such as hidden layer topology optimization and objective function analysis to save information that can increase forecasting accuracy while filtering out irrelevant or less affected data for forecasting.The research’s results indicate that RBFNN-AG performed the best when applying the predetermined number of days,with an NRMSE value of 4.65%.RBFNN-AG performs better than sophisticated models like DenseNet(5.69%),SLFN-ELM(5.95%),and ANN-k-means-linear regression correction(6.11%).Additionally,scenario application and PV system investment techniques are provided to evaluate the current condition of new energy development and market trends both domestically and internationally.展开更多
A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can b...A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can be effectively reduced by using complementary pass transistor logic and transmission gates.Furthermore,the minimization of the energy consumption can be obtained by choosing the optimal size of bootstrapped nMOS transistors,thus it has more efficient energy transfer and recovery.A three phase power supply generator with a small control logic circuit and a single inductor is proposed.An 8 bit adder based on CPAL is designed and verified.With MOSIS 0 25μm CMOS technology,the CPAL adder consumes only 35% of the dissipated energy of a 2N 2N2P adder and is about 50% of the dissipated energy of a PFAL adder for clock rates ranging from 50 to 200MHz.展开更多
The development of novel materials with ion-selective nanochannels has introduced a new technology for harvesting salinity gradient(blue)energy,namely nanopore power generators(NPGs).In this study,we perform a compreh...The development of novel materials with ion-selective nanochannels has introduced a new technology for harvesting salinity gradient(blue)energy,namely nanopore power generators(NPGs).In this study,we perform a comprehensive analysis of the practical performance of NPG in both coupon-size and module-scale operations.We show that although NPG membrane coupons can theoretically generate ultrahigh power density under ideal conditions,the resulting power density in practical operations at a coupon scale can hardly reach 10 W·m^(-2) due to concentration polarization effects.For module-scale NPG operation,we estimate both the power density and specific extractable energy(i.e.,extractable energy normalized by the total volume of the working solutions),and elucidate the impact of operating conditions on these two metrics based on the interplay between concentration polarization and extent of mixing of the high-and low-concentration solutions.Further,we develop a modeling framework to assess the viability of an NPG system.Our results demonstrate that,for NPG systems working with seawater and river water,the gross specific extractable energy by the NPG system is very low(~0.1 kW?h?m?3)and is further compromised by the parasitic energy consumptions in the system(notably,pumping of the seawater and river water solutions and their pretreatment).Overall,NPG systems produce very low net specific extractable energy(<0.025 kW?h?m?3)and net power density(<0.1 W?m?2).Our study highlights the significant practical limitations in NPG operations,casting doubt on the viability of NPG as a technology for blue energy harvesting.展开更多
The installation of wind power generators on buildings located in areas with regular winds may be a suitable investment in a renewable power source. Brazil has a high eolic potential, where the annual mean wind speed ...The installation of wind power generators on buildings located in areas with regular winds may be a suitable investment in a renewable power source. Brazil has a high eolic potential, where the annual mean wind speed may reach over eight meters per second. This case study is aimed to assess the economic feasibility of the installation of small wind power plants in urban areas. This work evaluates a project for the installation of a vertical axis wind turbine in three buildings (15-, 22-, and 26-story) including the following stages: (1) installation of a real-time power meter in the 15-store unit; (2) demand analysis of the 26-store building's power consumption; (3) winds survey along the coast of the State of Ceara; (4) analysis of the wind turbines available in the market; (5) simulation aimed to choose the system. Vertical wind power generators offer better conditions of use in urban areas. The turnover time was established to be between four and six years in the three studied units. The installation of a wind power generator on buildings in regions with an adequate eolic regimen reaches a financial return of the investment before the end of the equipment's lifespan.展开更多
To address the issues of investment appeal in the Russian electric power industry,this study analyzes the dynamics of corporate governance,including permanent redistribution of property and compliance with the Russian...To address the issues of investment appeal in the Russian electric power industry,this study analyzes the dynamics of corporate governance,including permanent redistribution of property and compliance with the Russian Corporate Governance Code,in wholesale and territorial-generating companies.The increasing concentration of property in the hands of the state and its implications for investors are also noted.This study reveals the violations of essential principles,and the substantial differences in corporate governance practices,in the best-and worst-performing companies.Additional standards for better corporate governance practices to benefit the investors in the context of the current Environmental,Social,and corporate Governance(ESG)agenda are proposed.This study provides a new insight at the development of corporate governance in Russian power generating companies through property redistribution and compliance with corporate governance principles.展开更多
Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of genera...Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of generalized power series over M is a PS [[RS,≤]]-module.展开更多
Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power ser...Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circ...The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circuit whose parameters are experimentally calculated by using the characteristic current-tension, I-V. The precise determination of these parameters stays a challenge for the researchers, making to a big difference in the models and the digital methods dedicated to their characterizations. In the present paper, We are interested to characterize the parameters of single diode and two diodes models, in order to plan the behavior of the photovoltaic generator under real functioning conditions. We developed an identification method of the parameters using Newton Raphson method by using the software Matlab/Simulink. This method is the faster technique which allows the identification of several parameters and can be used in real time applications. The results of the proposed method show an accordance with the experimental and simulated characteristics of photovoltaic generator.展开更多
Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]]...Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.展开更多
基金Project supported by the National Defense Basic Scientific Research Program of China(No.JCKY2013203B003)
文摘A magnetohydrodynamic (MHD) power generator system involves several subjects such as magnetohydrodynamics, plasma physics, material science, and structure mechanics. Therefore, the performance of the MHD power generator is affected by many factors, among which the load coefficient k is of great importance. This paper reveals the effect of some system parameters on the performance by three-dimensional (3D) numerical simulation for a Faraday type MHD power generator using He/Xe as working plasma. The results show that average electrical conductivity increases first and then decreases with the addition of magnetic field intensity. Electrical conductivity reaches the maximum value of 11.05 S/m, while the applied magnetic field strength is B = 1.75 T. When B 〉 3 T, the ionization rate along the midline well keeps stable, which indicates that the ionization rate and three-body recombination rate (three kinds of particles combining to two kinds of particles) are approximately equal, and the relatively stable plasma structure of the mainstream is preserved. Efficiency of power generation of the Faraday type channel increases with an increment of the load factor. However, enthalpy extraction first increases to a certain value, and then decreases with the load factor. The enthalpy extraction rate reaches the maximum when the load coefficient k equals 0.625, which is the best performance of the power generator channel with the maximum electricity production.
文摘Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.
文摘The development of hydrogen redox electric power generators for infinite cruising range electric vehicles represents a true technological breakthrough. Such systems consist of a polymer electrolyte membrane hydrogen electrolytic cell equipped with an electrostatic-induction potential-superposed water electrolytic cell that provides a stoichiometric H2-O2 fuel mixture during operation of the vehicle. This generator functions with zero power input, zero matter input and zero emission due to the so-called "zero power input" electrostatic-to-chemical energy conversion occurring in the electrolytic cell. Here, theoretical simulations were performed to verify the target performance of such generators, assuming a pair of FC (fuel cell) and electrolytic cell stacks, both of which are commercially available.
基金Project supported by National High-Technology Research andDevelopment Program of China (Grant No .2002AA517020)
文摘Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.
文摘Polluted populations of Euphorbia heterophylla, Chromolaena odorata, Commelina diffusa and Kyllinga pumila were collected fresh from 0.1 m to 0.25 m radii of the exhausted-pipe of power generators used for domestic purposes, whereas, their non-polluted counterparts were collected from distances of 100-110 m away. The length and width of 10 leaves, each of both polluted and non-polluted populations, were measured. Their average leaf areas (LA) were 2.60 ± 0.1 cm2, 14.16 ±0.4 cm2, 5.19 ± 0.8 cm2 and 1.80 ±0.8 cm2 for the polluted populations of each of the species, respectively. Whereas, the LA of their non-polluted counterparts were 4.18±0.7 cm2, 34.39 ±0.2 cm2, 7.51± 0.1 cm2 and 10.76 ± 0.3 cm2, respectively. Damages such as plugged stomatal pores, epidermal cell aberrations and erosion, ruptured stomatal ledges, occasional leaf perforations, irregularly fused cell boundaries and glued leaf surfaces were noticeable in the leaves of the polluted populations. Such were not observed in the non-polluted populations. It was suggested that foliar morphology of these group of plants could serve as phytometer to gauge the threats of power generators used in homes to terrestrial ecosystem.
基金supported by JSPS KAKENHI Grant Numbers 21H01541(2021‐2024)and SECOM Science and Technology Foundation(2021‐2024).
文摘We show a conceptual structure for a wave energy converter,which features a direct‐drive linear power generator with REBaCuO high‐temperature superconducting(HTS)bulk field poles and driven by a heaving buoy.A dual translator power generation system of the proposed concept structure is a linear generator in which both the HTS bulks and armature copper coils move in opposite directions simultaneously.A performance analysis of our linear generator was conducted using a finite‐element electromagnetic field analysis method.The results of the analysis were compared between the HTS dual translator linear power generator and the HTS single translator linear power generator.The maximum electromagnetic force and the average output power of the HTS dual translator are around 5%and 11%higher than that of the HTS single translator.We further present the results of the analysis regarding the influence of reducing the stroke length of the linear generator translator on the output power,where the output power for the HTS dual translator system increased up to a factor of two,in comparison to the HTS single translator counterpart,for the same reduction of stroke length.
基金supported in part by Chinese National Key Technologies R&D Program(2013BAA01B03)National Natural Science Foundation of China(51190101)industrial project of State Grid Corporation of China(No.NY71-13-043).
文摘China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.
基金supported by Natural Science Foundation of Hebei Province(No. F2012203088)
文摘According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is established and a new adaptive robust guaranteed cost controller (AGCC) is proposed in this paper. First, the uncertain parameters of the system are estimated by using the adaptive method, then the estimated uncertain parameters and robust guaranteed cost control method are used to design a state feedback controller. The controller s feedback gain is obtained by solving a set of linear matrix inequality (LMI) constraints, such that the controller can meet a quadratic performance evaluation criterion. The simulation results show that we can realize the goal of maximum wind energy capture in low wind speed by the optimal torque control and constant power control in high wind speed by variable pitch control with good dynamic characteristics, robustness and the ability of suppressing disturbance.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2009CB320300)
文摘As the size of the electronic system continuously reduces, characteristics of small volume, light weight, high energy it is very important to develop micro power generator, which has density and continuous energy supplying. Vibration energy exists widely in daily environment. Micro vibration power generator can harvest and exchange the vibration energy to the electrical energy. Micro electret power generator is one kind of the power generators for harvesting vibration energy and has been paid much attention by researchers. This paper describes the development and status of micro electret power generators, including electret materials and charging methods, vibration energy harvesting structures and conversion efficiency improvement.
文摘The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.
文摘This paper presents the concept of a Dielectric-lined Multiwave Cerenkov Generator producing high power millimeter waves, which has been investigated with a two and onehalf dimensional electromagnetic relativistic Particle-in-Cell (PIC) plasma simulation code. Themodified device can operate in a lower diode-voltage regime with much higher radiation efficiencyand slight downshift of operation frequency. There exist the optima for the permittivity of thedielectric liner and for the magnitude of the guiding magnetic field. The required intensity of theguiding field is reduced by the introduction of the liner. The enhanced propagation of the electronbeam is studied in the presence of the liner.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61902158,61806087).
文摘Photovoltaic power generating is one of the primary methods of utilizing solar energy resources,with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy.In order to provide reference strategies for pertinent researchers as well as potential implementation,this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches,statistical approaches and optimization techniques for solar power generation and forecasting.Deep learning-related methods,in particular,can theoretically handle arbitrary nonlinear transformations through proper model structural design,such as hidden layer topology optimization and objective function analysis to save information that can increase forecasting accuracy while filtering out irrelevant or less affected data for forecasting.The research’s results indicate that RBFNN-AG performed the best when applying the predetermined number of days,with an NRMSE value of 4.65%.RBFNN-AG performs better than sophisticated models like DenseNet(5.69%),SLFN-ELM(5.95%),and ANN-k-means-linear regression correction(6.11%).Additionally,scenario application and PV system investment techniques are provided to evaluate the current condition of new energy development and market trends both domestically and internationally.
文摘A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can be effectively reduced by using complementary pass transistor logic and transmission gates.Furthermore,the minimization of the energy consumption can be obtained by choosing the optimal size of bootstrapped nMOS transistors,thus it has more efficient energy transfer and recovery.A three phase power supply generator with a small control logic circuit and a single inductor is proposed.An 8 bit adder based on CPAL is designed and verified.With MOSIS 0 25μm CMOS technology,the CPAL adder consumes only 35% of the dissipated energy of a 2N 2N2P adder and is about 50% of the dissipated energy of a PFAL adder for clock rates ranging from 50 to 200MHz.
基金financial support from the Center for Enhanced Nanofluidic Transport (CENT),an Energy Frontier Research Center funded by the US Department of Energy,Office of Science,Basic Energy Sciences through Award No.DESC0019112
文摘The development of novel materials with ion-selective nanochannels has introduced a new technology for harvesting salinity gradient(blue)energy,namely nanopore power generators(NPGs).In this study,we perform a comprehensive analysis of the practical performance of NPG in both coupon-size and module-scale operations.We show that although NPG membrane coupons can theoretically generate ultrahigh power density under ideal conditions,the resulting power density in practical operations at a coupon scale can hardly reach 10 W·m^(-2) due to concentration polarization effects.For module-scale NPG operation,we estimate both the power density and specific extractable energy(i.e.,extractable energy normalized by the total volume of the working solutions),and elucidate the impact of operating conditions on these two metrics based on the interplay between concentration polarization and extent of mixing of the high-and low-concentration solutions.Further,we develop a modeling framework to assess the viability of an NPG system.Our results demonstrate that,for NPG systems working with seawater and river water,the gross specific extractable energy by the NPG system is very low(~0.1 kW?h?m?3)and is further compromised by the parasitic energy consumptions in the system(notably,pumping of the seawater and river water solutions and their pretreatment).Overall,NPG systems produce very low net specific extractable energy(<0.025 kW?h?m?3)and net power density(<0.1 W?m?2).Our study highlights the significant practical limitations in NPG operations,casting doubt on the viability of NPG as a technology for blue energy harvesting.
文摘The installation of wind power generators on buildings located in areas with regular winds may be a suitable investment in a renewable power source. Brazil has a high eolic potential, where the annual mean wind speed may reach over eight meters per second. This case study is aimed to assess the economic feasibility of the installation of small wind power plants in urban areas. This work evaluates a project for the installation of a vertical axis wind turbine in three buildings (15-, 22-, and 26-story) including the following stages: (1) installation of a real-time power meter in the 15-store unit; (2) demand analysis of the 26-store building's power consumption; (3) winds survey along the coast of the State of Ceara; (4) analysis of the wind turbines available in the market; (5) simulation aimed to choose the system. Vertical wind power generators offer better conditions of use in urban areas. The turnover time was established to be between four and six years in the three studied units. The installation of a wind power generator on buildings in regions with an adequate eolic regimen reaches a financial return of the investment before the end of the equipment's lifespan.
基金the State Assignment Project (No. FWEU-2021-0001) of the Fundamental Research Program of the Russian Federation 2021–2030
文摘To address the issues of investment appeal in the Russian electric power industry,this study analyzes the dynamics of corporate governance,including permanent redistribution of property and compliance with the Russian Corporate Governance Code,in wholesale and territorial-generating companies.The increasing concentration of property in the hands of the state and its implications for investors are also noted.This study reveals the violations of essential principles,and the substantial differences in corporate governance practices,in the best-and worst-performing companies.Additional standards for better corporate governance practices to benefit the investors in the context of the current Environmental,Social,and corporate Governance(ESG)agenda are proposed.This study provides a new insight at the development of corporate governance in Russian power generating companies through property redistribution and compliance with corporate governance principles.
基金The NNSF (10171082) of China and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P.R.C.
文摘Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of generalized power series over M is a PS [[RS,≤]]-module.
基金TRAPOYT(200280)the Cultivation Fund(704004)of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.
文摘The mathematical modeling of solar cells is essential for any optimization operation of the efficiency or the diagnosis of photovoltaic generator. The photovoltaic module is generally represented by an equivalent circuit whose parameters are experimentally calculated by using the characteristic current-tension, I-V. The precise determination of these parameters stays a challenge for the researchers, making to a big difference in the models and the digital methods dedicated to their characterizations. In the present paper, We are interested to characterize the parameters of single diode and two diodes models, in order to plan the behavior of the photovoltaic generator under real functioning conditions. We developed an identification method of the parameters using Newton Raphson method by using the software Matlab/Simulink. This method is the faster technique which allows the identification of several parameters and can be used in real time applications. The results of the proposed method show an accordance with the experimental and simulated characteristics of photovoltaic generator.
基金The Youth Foundation(QN2012-14)of Hexi University
文摘Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.