期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Wind Power Prediction Framework for Distributed Power Grids
1
作者 Bin Chen Ziyang Li +2 位作者 Shipeng Li Qingzhou Zhao Xingdou Liu 《Energy Engineering》 EI 2024年第5期1291-1307,共17页
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com... To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods. 展开更多
关键词 Wind power prediction distributed power grid WRF mode deep learning variational mode decomposition
下载PDF
Automatic Generation Control in a Distributed Power Grid Based on Multi-step Reinforcement Learning
2
作者 Wenmeng Zhao Tuo Zeng +3 位作者 Zhihong Liu Lihui Xie Lei Xi Hui Ma 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第4期39-50,共12页
The increasing use of renewable energy in the power system results in strong stochastic disturbances and degrades the control performance of the distributed power grids.In this paper,a novel multi-agent collaborative ... The increasing use of renewable energy in the power system results in strong stochastic disturbances and degrades the control performance of the distributed power grids.In this paper,a novel multi-agent collaborative reinforcement learning algorithm is proposed with automatic optimization,namely,Dyna-DQL,to quickly achieve an optimal coordination solution for the multi-area distributed power grids.The proposed Dyna framework is combined with double Q-learning to collect and store the environmental samples.This can iteratively update the agents through buffer replay and real-time data.Thus the environmental data can be fully used to enhance the learning speed of the agents.This mitigates the negative impact of heavy stochastic disturbances caused by the integration of renewable energy on the control performance.Simulations are conducted on two different models to validate the effectiveness of the proposed algorithm.The results demonstrate that the proposed Dyna-DQL algorithm exhibits superior stability and robustness compared to other reinforcement learning algorithms. 展开更多
关键词 Automatic generation control Dyna framework distributed power grid MULTI-AGENT mod-el-based reinforcement learning
原文传递
交直流并联输电通道功率分配的分布鲁棒优化 被引量:1
3
作者 何森 刘洁 +6 位作者 王奇 周震震 常安 肖耀辉 梁炜焜 林舜江 董萍 《电力科学与技术学报》 CAS CSCD 北大核心 2023年第6期225-236,共12页
考虑新能源场站出力的不确定性,基于分布鲁棒优化方法,建立高比例新能源电网交直流并联输电通道功率分配的两阶段优化模型。第1阶段目标函数为新能源场站出力预测场景下所有交直流输电线路有功损耗费用之和最小;第2阶段目标函数为新能... 考虑新能源场站出力的不确定性,基于分布鲁棒优化方法,建立高比例新能源电网交直流并联输电通道功率分配的两阶段优化模型。第1阶段目标函数为新能源场站出力预测场景下所有交直流输电线路有功损耗费用之和最小;第2阶段目标函数为新能源场站出力的最劣概率分布下直调电厂出力和直流输电线路功率的调整成本的期望值最小。在构建概率分布的模糊集时,提出以Hellinger距离衡量实际概率与参考概率分布之间的距离,并采用Markov链描述新能源场站出力的时间相关性。通过采用列与约束生成(CCG)算法求解两阶段分布鲁棒优化模型,以获得各回交直流并联输电通道日前功率传输计划。最后,以某个实际交直流混联电网为例,分析计算结果可以验证所提出模型、算法的有效性和正确性。 展开更多
关键词 交直流混联电网 输电通道功率分配 分布鲁棒优化 Hellinger距离 马尔可夫链
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部