Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damp...Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.展开更多
This paper firstly reviews the recent development in power system protection and control, with special attention paid to the wide-area and integrated protection, in order to look into future development of integration...This paper firstly reviews the recent development in power system protection and control, with special attention paid to the wide-area and integrated protection, in order to look into future development of integration of protection and control for smart grids. This paper mainly reports on the development of integrated wide area protection and control for power systems. The concept of integrated wide area protection and control is introduced, in which a hierarchical protection and control system provides the protection and control of wide area or regional power substations/ plants and their associated power network. The system is mainly divided into three levels, the local, the substation/plant and the wide area/regional protection and control. The integrated functions at each level are described in details with an aim to develop an optimal coordination mechanism between the levels. One of the core elements in the system is the synchronised wide area communication network between the substations and the protection and control system, in which latest communication technology is employed. Another important player in the system is the wide area synchronized protection and control information platform, which not only enables the fusion three line of defence for power system protection and control, but also provides a perfect tool for the application of cloud computing to substations and power networks.展开更多
A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power system...A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.展开更多
The traditional“three defense lines”for power systems are based on local information and static protection&control strategy,which are not suitable to modern large-scale power systems.In order to improve the secu...The traditional“three defense lines”for power systems are based on local information and static protection&control strategy,which are not suitable to modern large-scale power systems.In order to improve the security of UHV hybrid power grids,the Integrated Wide Area Protection&Control(IWAPC)is proposed in this paper by applying the new technologies of synchronized high-speed communication,which integrates“three defense lines”and promotes existing wide area protection only for security control.The IWAPC is the hierarchical protection and control system which provides the protection and control for wide area power networks to improve their reliability and security.It is divided into three levels,the local bay level,the substation integrated protection level and the wide area protection level.The wide area real-time protection and control information platform is the most important part of the IWAPC,which is based on a synchronized wide area communication network.The key technologies and new development trends include network topology analysis,wide area backup protection,wide area intelligent reclosing,wide area load shedding,wide area auto-switching,overload cutoff and transfer,transmission section protection,intelligent system splitting and dynamic stability control.It cannot only integrate three lines of defense for power system protection and control,but also improve security of the power grid.展开更多
In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving term...In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving terminal power grids. An HVDC system is a large-scale power electronic integrated nonlinear system, and it includes a primary system and a control and protection system. Hence, the precision and degree of detail of HVDC systems directly affect the actual effect of simulation. In recent years, in the case of the normal operation and failure of AC power grids, the abnormal fluctuation and even locking of HVDC systems caused by the inappropriate strategies of the control and protection system component have strongly affected power grids. This has significantly affected the safety and stability of receiving power grids and normal operation. In this study, the actual engineering HVDC control logic provided by a manufacturer is analyzed and simulated based on the user defined component library of the ADPSS electromagnetic transient calculation program, and an HVDC control model based on an actual system is established. The accuracy of the DC control custom model based on ADPSS is verified through the simulation of an actual power grid.展开更多
In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of...In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.展开更多
Wide area monitoring(WAM) offers many opportunities to improve the performance of power system protection. This paper presents some of these opportunities and the motivation for their development. This methods include...Wide area monitoring(WAM) offers many opportunities to improve the performance of power system protection. This paper presents some of these opportunities and the motivation for their development. This methods include monitoring the suitability of relay characteristics,supervisory control of backup protection, more adaptive and intelligent system protection and the creation of novel system integrity protection scheme. The speed of response required for primary protection means that the role WAM in enhancing protection is limited to backup and system protection. The opportunities offered by WAM for enhancing protection are attractive because of the emerging challenges faced by the modern power system protection. The increasingly variable operating conditions of power systems are making it ever more difficult to select relay characteristics that will be a suitable compromise for all loading conditions and contingencies. The maloperation of relays has contributed to the inception and evolution of 70 % of blackouts,thus the supervision of the backup protection may prove a valuable tool for preventing or limiting the scale of blackouts. The increasing interconnection and complexity of modern power systems has made them more vulnerable to wide area disturbances and this has contributed to several recent blackouts. The proper management of these wide area disturbances is beyond the scope of most of the existing protection and new, adaptive system integrity protection schemes are needed to protect power system security.展开更多
Complexity of modern electrical power systems is steadily increasing.This is inspiring researchers and developers to propose new solutions capable to address a number of challenges,particularly those related to power ...Complexity of modern electrical power systems is steadily increasing.This is inspiring researchers and developers to propose new solutions capable to address a number of challenges,particularly those related to power system operation.A massive penetration of asynchronously connected renewable energy generation,the generation connected over inverters,is significantly changing the dynamics of modern power systems.From one hand,the power system response time is becoming shorter and at the same time the fault level is becoming smaller.This is significantly affecting requirements of control loops,as well as power system protection.展开更多
基金Project(51007042) supported by the National Natural Science Foundation of China
文摘Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.
文摘This paper firstly reviews the recent development in power system protection and control, with special attention paid to the wide-area and integrated protection, in order to look into future development of integration of protection and control for smart grids. This paper mainly reports on the development of integrated wide area protection and control for power systems. The concept of integrated wide area protection and control is introduced, in which a hierarchical protection and control system provides the protection and control of wide area or regional power substations/ plants and their associated power network. The system is mainly divided into three levels, the local, the substation/plant and the wide area/regional protection and control. The integrated functions at each level are described in details with an aim to develop an optimal coordination mechanism between the levels. One of the core elements in the system is the synchronised wide area communication network between the substations and the protection and control system, in which latest communication technology is employed. Another important player in the system is the wide area synchronized protection and control information platform, which not only enables the fusion three line of defence for power system protection and control, but also provides a perfect tool for the application of cloud computing to substations and power networks.
文摘A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.
文摘The traditional“three defense lines”for power systems are based on local information and static protection&control strategy,which are not suitable to modern large-scale power systems.In order to improve the security of UHV hybrid power grids,the Integrated Wide Area Protection&Control(IWAPC)is proposed in this paper by applying the new technologies of synchronized high-speed communication,which integrates“three defense lines”and promotes existing wide area protection only for security control.The IWAPC is the hierarchical protection and control system which provides the protection and control for wide area power networks to improve their reliability and security.It is divided into three levels,the local bay level,the substation integrated protection level and the wide area protection level.The wide area real-time protection and control information platform is the most important part of the IWAPC,which is based on a synchronized wide area communication network.The key technologies and new development trends include network topology analysis,wide area backup protection,wide area intelligent reclosing,wide area load shedding,wide area auto-switching,overload cutoff and transfer,transmission section protection,intelligent system splitting and dynamic stability control.It cannot only integrate three lines of defense for power system protection and control,but also improve security of the power grid.
基金supported by National Key Research and Development Program of China-High performance analysis and situational awareness technology for interconnected power grids
文摘In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving terminal power grids. An HVDC system is a large-scale power electronic integrated nonlinear system, and it includes a primary system and a control and protection system. Hence, the precision and degree of detail of HVDC systems directly affect the actual effect of simulation. In recent years, in the case of the normal operation and failure of AC power grids, the abnormal fluctuation and even locking of HVDC systems caused by the inappropriate strategies of the control and protection system component have strongly affected power grids. This has significantly affected the safety and stability of receiving power grids and normal operation. In this study, the actual engineering HVDC control logic provided by a manufacturer is analyzed and simulated based on the user defined component library of the ADPSS electromagnetic transient calculation program, and an HVDC control model based on an actual system is established. The accuracy of the DC control custom model based on ADPSS is verified through the simulation of an actual power grid.
文摘In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.
文摘Wide area monitoring(WAM) offers many opportunities to improve the performance of power system protection. This paper presents some of these opportunities and the motivation for their development. This methods include monitoring the suitability of relay characteristics,supervisory control of backup protection, more adaptive and intelligent system protection and the creation of novel system integrity protection scheme. The speed of response required for primary protection means that the role WAM in enhancing protection is limited to backup and system protection. The opportunities offered by WAM for enhancing protection are attractive because of the emerging challenges faced by the modern power system protection. The increasingly variable operating conditions of power systems are making it ever more difficult to select relay characteristics that will be a suitable compromise for all loading conditions and contingencies. The maloperation of relays has contributed to the inception and evolution of 70 % of blackouts,thus the supervision of the backup protection may prove a valuable tool for preventing or limiting the scale of blackouts. The increasing interconnection and complexity of modern power systems has made them more vulnerable to wide area disturbances and this has contributed to several recent blackouts. The proper management of these wide area disturbances is beyond the scope of most of the existing protection and new, adaptive system integrity protection schemes are needed to protect power system security.
文摘Complexity of modern electrical power systems is steadily increasing.This is inspiring researchers and developers to propose new solutions capable to address a number of challenges,particularly those related to power system operation.A massive penetration of asynchronously connected renewable energy generation,the generation connected over inverters,is significantly changing the dynamics of modern power systems.From one hand,the power system response time is becoming shorter and at the same time the fault level is becoming smaller.This is significantly affecting requirements of control loops,as well as power system protection.