The nonlinear behaviors of a circular-cylinder piezoelectric power harvester (CCPPH) near resonance are analyzed based on the flow-induced flexural vibration mode. The geometrically-nonlinear effect of the cylinder ...The nonlinear behaviors of a circular-cylinder piezoelectric power harvester (CCPPH) near resonance are analyzed based on the flow-induced flexural vibration mode. The geometrically-nonlinear effect of the cylinder is studied with considering the in-plane extension incidental to the large defection. The boundary electric charges generated from two deformation modes, flexure and in-plane extension, were distinguished with each other because the charge corresponding to the latter mode produces no contribution to the output current. Numerical results on output powers show that there are multi- valuedness and jump behaviors.展开更多
A structure consisting of a spiral piezoelectric transducer and a concentrated mass is proposed as a low-frequency piezoelectric power harvester. A theoretical model is developed for the system from the theory of piez...A structure consisting of a spiral piezoelectric transducer and a concentrated mass is proposed as a low-frequency piezoelectric power harvester. A theoretical model is developed for the system from the theory of piezoelectricity. An analysis is performed to demonstrate the low-frequency nature of the system. Other basic characteristics of the power harvester including the output power, voltage, and efficiency are also calculated and examined.展开更多
Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric outpu...Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy from angular vibrations to electrical energy. Analytical expressions and numerical results for the output voltage, current, power, efficiency and power density are given.展开更多
Wind-driven power harvestings attract attentions since their target wind speeds are quite low less than the so-called cut-in wind speed, which is generally recognized as around 3 m/s. The extant power harvestings driv...Wind-driven power harvestings attract attentions since their target wind speeds are quite low less than the so-called cut-in wind speed, which is generally recognized as around 3 m/s. The extant power harvestings driven by wind-induced-air-column-resonations (i.e. acoustic-pressures) are still lacking simplicity, scale flexibility and solid strategies for practical applications. Therefore, the piezoelectric power harvesters via acoustic-pressures driven by low-speedwind-forces with resonating-tubes and wind-collectors were invented so as to complement all the lacks. The wind-collector as well as the resonating-tube contributed to upraise the power harvesting density. The champion power harvesting density of 19.5 nW/dm2 could be procured at 2.3 m/s of an artificial wind and the optimal resonating-tube and wind-collector. Power harvesting proofs from the natural wind with low mean speeds down to about 0.6 m/s were successfully obtained. The cut-in wind speed of the prototype piezoelectric power harvester was found to be quite low as about 0.4 m/s, signifying its ubiquity. Finally, a multi-bundle pendant-type piezoelectric power harvester was specifically presented together with professing the solid and multiple strategies for practical applications.展开更多
Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures l...Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.展开更多
We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources. A theoretical analysis is performed an...We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources. A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size. It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.展开更多
To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments...To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester.展开更多
Energy harvesting (EH) is a promising technology to improve both energy efficiency and spectral efficiency in cognitive radio (CR) networks. However, due to the randomness of the harvested energy and the interference ...Energy harvesting (EH) is a promising technology to improve both energy efficiency and spectral efficiency in cognitive radio (CR) networks. However, due to the randomness of the harvested energy and the interference constraint at the primary users (PUs), the limited transmission power of secondary users (SUs) may reduce the service rate of SUs. To solve this problem, this paper investigates a cooperative transmission method where a zero-forcing beamforming method is used in the EH based secondary network. Considering the transmission power constraint and energy causality, we derive the closed-form solution of the optimal transmission power for the secondary source and relays, which achieves the maximal stable throughput of the secondary network. Numerical results show the impact of different system parameters to the maximal stable throughput. In addition, compared with the traditional decode-and-forward (DF) scheme, the cooperative beamforming method achieves higher stable throughput under an high quality source-to-relay channel.展开更多
Piezoelectric energy harvesting technology is used to design battery less microelectronic devices such as wireless sensor nodes. This paper investigates the necessary conditions to enhance the extracted AC electrical ...Piezoelectric energy harvesting technology is used to design battery less microelectronic devices such as wireless sensor nodes. This paper investigates the necessary conditions to enhance the extracted AC electrical power from exciting vibrations energy using piezoelectric materials. The effect of tip masses and their mounting positions are investigated to enhance the system performance. The optimal resistive load is estimated to maximize the power output. Different capacitive loads are tested to store the output energy. The experimental results validated the theoretical analysis and highlighted remarks in the paper.展开更多
The energy of a radio wave is reduced through the dispersion, the refraction and the absorption because the medium transferring the vibration of a radio wave is the seawater. In the end the reduced energy of a radio w...The energy of a radio wave is reduced through the dispersion, the refraction and the absorption because the medium transferring the vibration of a radio wave is the seawater. In the end the reduced energy of a radio wave causes the reduced transmitting length for communication, the long postponed communication and the frequent error. The subsea communication for the marine environment monitoring which must overcome the weak points of the RF wave and the most practical method for the marine sensor network realization is to use the acoustic wave method, but the energy consumption rate of the acoustic wave communication method is about 100 times greater than the one of the RF wave method. So, the power supply of the sensor node in the marine sensor network system is the most important interest field. In this study, the sample which consists of an acrylic elastomer(VHB4905 film from 3M), conductible carbon grease(from MG chemical) and electric wire for the basic study of an energy harvesting strategy and technique using EAP actuator was fabricated, and the conductible carbon grease was used for an electrode. The characteristics of the fabricated sample were analyzed through the experiment. We also mixed carbon grease with aluminum powder for conductibility improvement, and the effect of the mixed electrode was confirmed through the conductivity measurement.展开更多
针对振动能量收集电路整流二极管损耗大、非线性电路控制复杂以及优化负载不高的问题,提出了大负载高功率振动能量收集同步整流与电荷提取方法。通过同步电感翻转电压提高整流电压,采用短时能量提取缩短整流器件导通时间,减小能量损耗,...针对振动能量收集电路整流二极管损耗大、非线性电路控制复杂以及优化负载不高的问题,提出了大负载高功率振动能量收集同步整流与电荷提取方法。通过同步电感翻转电压提高整流电压,采用短时能量提取缩短整流器件导通时间,减小能量损耗,实现高功率能量收集。基于压电等效模型设计了自供电同步整流与电荷提取电路(self-powered synchronous rectification and electric charge extraction,简称SP-SREE),对一个振动周期电路各工作阶段进行分析,推导出SP-SREE电路理论收集功率,并对电路进行功能测试和负载功率特性测试。理论分析与实验对比表明,所提出的方法在大负载下具有更高的收集功率,可为机械振动无线传感器网络等能源受限场景下自供电提供重要参考。展开更多
基金supported by the National Natural Science Foundation of China(Nos.10932004 and11272127)a grant from the Impact and Safety of Coastal Engineering Initiative,a Center of Excellence Program of Zhejiang Provincial Government at Ningbo University(No.zj1213)
文摘The nonlinear behaviors of a circular-cylinder piezoelectric power harvester (CCPPH) near resonance are analyzed based on the flow-induced flexural vibration mode. The geometrically-nonlinear effect of the cylinder is studied with considering the in-plane extension incidental to the large defection. The boundary electric charges generated from two deformation modes, flexure and in-plane extension, were distinguished with each other because the charge corresponding to the latter mode produces no contribution to the output current. Numerical results on output powers show that there are multi- valuedness and jump behaviors.
基金supported by the National Natural Science Foundation of China(Nos.10932004 and 11272127)
文摘A structure consisting of a spiral piezoelectric transducer and a concentrated mass is proposed as a low-frequency piezoelectric power harvester. A theoretical model is developed for the system from the theory of piezoelectricity. An analysis is performed to demonstrate the low-frequency nature of the system. Other basic characteristics of the power harvester including the output power, voltage, and efficiency are also calculated and examined.
文摘Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy from angular vibrations to electrical energy. Analytical expressions and numerical results for the output voltage, current, power, efficiency and power density are given.
文摘Wind-driven power harvestings attract attentions since their target wind speeds are quite low less than the so-called cut-in wind speed, which is generally recognized as around 3 m/s. The extant power harvestings driven by wind-induced-air-column-resonations (i.e. acoustic-pressures) are still lacking simplicity, scale flexibility and solid strategies for practical applications. Therefore, the piezoelectric power harvesters via acoustic-pressures driven by low-speedwind-forces with resonating-tubes and wind-collectors were invented so as to complement all the lacks. The wind-collector as well as the resonating-tube contributed to upraise the power harvesting density. The champion power harvesting density of 19.5 nW/dm2 could be procured at 2.3 m/s of an artificial wind and the optimal resonating-tube and wind-collector. Power harvesting proofs from the natural wind with low mean speeds down to about 0.6 m/s were successfully obtained. The cut-in wind speed of the prototype piezoelectric power harvester was found to be quite low as about 0.4 m/s, signifying its ubiquity. Finally, a multi-bundle pendant-type piezoelectric power harvester was specifically presented together with professing the solid and multiple strategies for practical applications.
文摘Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.
基金This work was supported by the National Natural Science Foundation of China (Grant No.10172036)the Scientific Research Foundation for the Returned Overseas Chinese Scholar,Ministry of Education of China.
文摘We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources. A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size. It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.
基金Supported by the National Natural Science Foundation of China(51305183)the Qing Lan Project of Jiangsu Provincethe Doctoral Start-up Foundation of Jinling Institute of Technology(jit-b-201412)
文摘To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester.
基金supported by the National High-Tech R&D Program under Grant No.2015AA01A705the National Natural Science Foundation of China under Grants No.61271168 and No.61471104
文摘Energy harvesting (EH) is a promising technology to improve both energy efficiency and spectral efficiency in cognitive radio (CR) networks. However, due to the randomness of the harvested energy and the interference constraint at the primary users (PUs), the limited transmission power of secondary users (SUs) may reduce the service rate of SUs. To solve this problem, this paper investigates a cooperative transmission method where a zero-forcing beamforming method is used in the EH based secondary network. Considering the transmission power constraint and energy causality, we derive the closed-form solution of the optimal transmission power for the secondary source and relays, which achieves the maximal stable throughput of the secondary network. Numerical results show the impact of different system parameters to the maximal stable throughput. In addition, compared with the traditional decode-and-forward (DF) scheme, the cooperative beamforming method achieves higher stable throughput under an high quality source-to-relay channel.
文摘Piezoelectric energy harvesting technology is used to design battery less microelectronic devices such as wireless sensor nodes. This paper investigates the necessary conditions to enhance the extracted AC electrical power from exciting vibrations energy using piezoelectric materials. The effect of tip masses and their mounting positions are investigated to enhance the system performance. The optimal resistive load is estimated to maximize the power output. Different capacitive loads are tested to store the output energy. The experimental results validated the theoretical analysis and highlighted remarks in the paper.
文摘The energy of a radio wave is reduced through the dispersion, the refraction and the absorption because the medium transferring the vibration of a radio wave is the seawater. In the end the reduced energy of a radio wave causes the reduced transmitting length for communication, the long postponed communication and the frequent error. The subsea communication for the marine environment monitoring which must overcome the weak points of the RF wave and the most practical method for the marine sensor network realization is to use the acoustic wave method, but the energy consumption rate of the acoustic wave communication method is about 100 times greater than the one of the RF wave method. So, the power supply of the sensor node in the marine sensor network system is the most important interest field. In this study, the sample which consists of an acrylic elastomer(VHB4905 film from 3M), conductible carbon grease(from MG chemical) and electric wire for the basic study of an energy harvesting strategy and technique using EAP actuator was fabricated, and the conductible carbon grease was used for an electrode. The characteristics of the fabricated sample were analyzed through the experiment. We also mixed carbon grease with aluminum powder for conductibility improvement, and the effect of the mixed electrode was confirmed through the conductivity measurement.
文摘针对振动能量收集电路整流二极管损耗大、非线性电路控制复杂以及优化负载不高的问题,提出了大负载高功率振动能量收集同步整流与电荷提取方法。通过同步电感翻转电压提高整流电压,采用短时能量提取缩短整流器件导通时间,减小能量损耗,实现高功率能量收集。基于压电等效模型设计了自供电同步整流与电荷提取电路(self-powered synchronous rectification and electric charge extraction,简称SP-SREE),对一个振动周期电路各工作阶段进行分析,推导出SP-SREE电路理论收集功率,并对电路进行功能测试和负载功率特性测试。理论分析与实验对比表明,所提出的方法在大负载下具有更高的收集功率,可为机械振动无线传感器网络等能源受限场景下自供电提供重要参考。