A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanc...A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanced by discharging and pre-charging the key nodes of the output circuit and adding an additional shortcircuit current path. Thus, the power consumption is constant in every read cycle. As a result, the DPA-resistant ability of the SRAM is improved. In 65 nm CMOS technology, the power balance SRAM is fully custom designed with a layout area of 5863.6 μm^2.The post-simulation results show that the normalized energy deviation(NED) and normalized standard deviation(NSD) are 0.099% and 0.04%, respectively. Compared to existing power balance circuits, the power balance ability of the proposed SRAM has improved 53%.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ14F040001)the National Natural Science Foundation of China(Nos.61274132,61234002)the K.C.Wong Magna Fund in Ningbo University,China
文摘A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanced by discharging and pre-charging the key nodes of the output circuit and adding an additional shortcircuit current path. Thus, the power consumption is constant in every read cycle. As a result, the DPA-resistant ability of the SRAM is improved. In 65 nm CMOS technology, the power balance SRAM is fully custom designed with a layout area of 5863.6 μm^2.The post-simulation results show that the normalized energy deviation(NED) and normalized standard deviation(NSD) are 0.099% and 0.04%, respectively. Compared to existing power balance circuits, the power balance ability of the proposed SRAM has improved 53%.