The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power g...The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli...Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.展开更多
One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this pa...One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.展开更多
IoT usage in healthcare is one of the fastest growing domains all over the world which applies to every age group.Internet of Medical Things(IoMT)bridges the gap between the medical and IoT field where medical devices...IoT usage in healthcare is one of the fastest growing domains all over the world which applies to every age group.Internet of Medical Things(IoMT)bridges the gap between the medical and IoT field where medical devices communicate with each other through a wireless communication network.Advancement in IoMT makes human lives easy and better.This paper provides a comprehensive detailed literature survey to investigate different IoMT-driven applications,methodologies,and techniques to ensure the sustainability of IoMT-driven systems.The limitations of existing IoMTframeworks are also analyzed concerning their applicability in real-time driven systems or applications.In addition to this,various issues(gaps),challenges,and needs in the context of such systems are highlighted.The purpose of this paper is to interpret a rigorous review concept related to IoMT and present significant contributions in the field across the research fraternity.Lastly,this paper discusses the opportunities and prospects of IoMT and discusses various open research problems.展开更多
In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT d...In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time.展开更多
The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power syst...The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power system and makes full use of the mobile internet,artificial intelligence,and other advanced information and communication technologies in order to realize the inter-human interaction of all things in all links of the power system.This article systematically presents to the national and international organizations and agencies in charge of UPIoT layer standardization the status quo of the research on the Internet of Things(IoT)-related industry standards system.It briefly describes the generic standard classification methods,layered architecture,conceptual model,and system tables in the UPIoT application layer.Based on the principles of inheritance,innovation,and practicability,this study divides the application layer into customer service,power grid operation,integrated energy,and enterprise operation,emerging business and analyzes the standard requirements of these five fields.This study also proposes a standard plan.Finally,it summarizes the research report and provides suggestions for a follow-up work.展开更多
In Internet of Things(IoT), the devices or terminals are connected with each other, which can be very diverse over the wireless networks. Unfortunately, the current devices are not designed to communicate with the col...In Internet of Things(IoT), the devices or terminals are connected with each other, which can be very diverse over the wireless networks. Unfortunately, the current devices are not designed to communicate with the collocated devices which employ different communication technologies. Consequently, the communication between these devices will be realized only by using the gateway nodes. This will cause the inefficient use of wireless resources. Therefore, in this paper, a smart service system(SSS) architecture is proposed, which consists of smart service terminal(SST), and smart service network(SSN), to realize the Io T in a general environment with diverse communication networks, devices, and services. The proposed architecture has the following advantages: i) the devices in this architecture cover multiple types of terminals and sensor-actuator devices; ii) the communications network therein is a converged network, and will coordinate multiple kinds of existing and emerging networks. This converged network offers ubiquitous access for various sensors and terminals; iii) the architecture has services and applications covering all smart service areas. It also provides theadaptability to new services and applications. A SSS architecture-based smart campus system was developed and deployed. Evaluation experiments of the proposed smart campus system demonstrate the SSS's advantages over the existing counterparts, and verify the effectiveness of the proposed architecture.展开更多
Internet of Things(IoT)is vulnerable to data-tampering(DT)attacks.Due to resource limitations,many anomaly detection systems(ADSs)for IoT have high false positive rates when detecting DT attacks.This leads to the misr...Internet of Things(IoT)is vulnerable to data-tampering(DT)attacks.Due to resource limitations,many anomaly detection systems(ADSs)for IoT have high false positive rates when detecting DT attacks.This leads to the misreporting of normal data,which will impact the normal operation of IoT.To mitigate the impact caused by the high false positive rate of ADS,this paper proposes an ADS management scheme for clustered IoT.First,we model the data transmission and anomaly detection in clustered IoT.Then,the operation strategy of the clustered IoT is formulated as the running probabilities of all ADSs deployed on every IoT device.In the presence of a high false positive rate in ADSs,to deal with the trade-off between the security and availability of data,we develop a linear programming model referred to as a security trade-off(ST)model.Next,we develop an analysis framework for the ST model,and solve the ST model on an IoT simulation platform.Last,we reveal the effect of some factors on the maximum combined detection rate through theoretical analysis.Simulations show that the ADS management scheme can mitigate the data unavailability loss caused by the high false positive rates in ADS.展开更多
Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising te...Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising technologies contribute to the unprecedented service in 5G.We establish a multiservice heterogeneous network model,which aims to raise the transmission rate under the delay constraints for active control terminals,and optimize the energy efficiency for passive network terminals.A policygradient-based deep reinforcement learning algorithm is proposed to make decisions on user association and power control in the continuous action space.Simulation results indicate the good convergence of the algorithm,and higher reward is obtained compared with other baselines.展开更多
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en...COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.展开更多
A rudimentary aspect of human life is the health of an individual,and most commonly the wellbeing is impacted in a colossal manner through the consumption of food. The intake of calories therefore is a crucial aspect ...A rudimentary aspect of human life is the health of an individual,and most commonly the wellbeing is impacted in a colossal manner through the consumption of food. The intake of calories therefore is a crucial aspect that must be meticulously monitored. Various health gremlins can be largely circumvented when there is a substantial balance in the number of calories ingested versus the quantity of calories expended.The food calorie estimation is a popular domain of research in recent times and is meticulously analyzed through various image processing and machine learning techniques. However,the need to scrutinize and evaluate the calorie estimation through various platforms and algorithmic approaches aids in providing a deeper insight on the bottlenecks involved,and in improvising the bariatric health of an individual. This paper pivots on comprehending a juxtaposed approach of food calorie estimation through the use of employing Convolution Neural Network(CNN)incorporated in Internet of Things(IoT),and using the Django framework in Python,along with query rule-based training to analyze the subsequent actions to be followed post the consumption of food calories in the constructed webpage. The comparative analysis of the food calorie estimate implemented in both platforms is analyzed for the swiftness of identification,error rate and classification accuracy to appropriately determine the optimal method of use. The simulation results for IoT are carried out using the Raspberry Pi4B model,while the Anaconda prompt is used to run the server holding the web page.展开更多
By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)platforms.Such vast heterogeneous data i...By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)platforms.Such vast heterogeneous data increase the challenges of security risks and data analysis procedures.As IIoT grows,cyber-attacks become more diverse and complex,making existing anomaly detection models less effective to operate.In this paper,an ensemble deep learning model that uses the benefits of the Long Short-Term Memory(LSTM)and the AutoEncoder(AE)architecture to identify out-of-norm activities for cyber threat hunting in IIoT is proposed.In this model,the LSTM is applied to create a model on normal time series of data(past and present data)to learn normal data patterns and the important features of data are identified by AE to reduce data dimension.In addition,the imbalanced nature of IIoT datasets has not been considered in most of the previous literature,affecting low accuracy and performance.To solve this problem,the proposed model extracts new balanced data from the imbalanced datasets,and these new balanced data are fed into the deep LSTM AE anomaly detection model.In this paper,the proposed model is evaluated on two real IIoT datasets-Gas Pipeline(GP)and Secure Water Treatment(SWaT)that are imbalanced and consist of long-term and short-term dependency on data.The results are compared with conventional machine learning classifiers,Random Forest(RF),Multi-Layer Perceptron(MLP),Decision Tree(DT),and Super Vector Machines(SVM),in which higher performance in terms of accuracy is obtained,99.3%and 99.7%based on GP and SWaT datasets,respectively.Moreover,the proposed ensemble model is compared with advanced related models,including Stacked Auto-Encoders(SAE),Naive Bayes(NB),Projective Adaptive Resonance Theory(PART),Convolutional Auto-Encoder(C-AE),and Package Signatures(PS)based LSTM(PS-LSTM)model.展开更多
This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest cl...This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
The Internet of Medical Things (IoMT) emerges with the visionof the Wireless Body Sensor Network (WBSN) to improve the health monitoringsystems and has an enormous impact on the healthcare system forrecognizing the le...The Internet of Medical Things (IoMT) emerges with the visionof the Wireless Body Sensor Network (WBSN) to improve the health monitoringsystems and has an enormous impact on the healthcare system forrecognizing the levels of risk/severity factors (premature diagnosis, treatment,and supervision of chronic disease i.e., cancer) via wearable/electronic healthsensor i.e., wireless endoscopic capsule. However, AI-assisted endoscopy playsa very significant role in the detection of gastric cancer. Convolutional NeuralNetwork (CNN) has been widely used to diagnose gastric cancer based onvarious feature extraction models, consequently, limiting the identificationand categorization performance in terms of cancerous stages and gradesassociated with each type of gastric cancer. This paper proposed an optimizedAI-based approach to diagnose and assess the risk factor of gastric cancerbased on its type, stage, and grade in the endoscopic images for smarthealthcare applications. The proposed method is categorized into five phasessuch as image pre-processing, Four-Dimensional (4D) image conversion,image segmentation, K-Nearest Neighbour (K-NN) classification, and multigradingand staging of image intensities. Moreover, the performance of theproposed method has experimented on two different datasets consisting ofcolor and black and white endoscopic images. The simulation results verifiedthat the proposed approach is capable of perceiving gastric cancer with 88.09%sensitivity, 95.77% specificity, and 96.55% overall accuracy respectively.展开更多
As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause ...As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset.展开更多
Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The...Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The traditional flood prediction techniques often encounter challenges in accuracy,timeliness,complexity in handling dynamic flood patterns and leading to substandard flood management strategies.To address these challenges,there is a need for advanced machine learning models that can effectively analyze Internet of Things(IoT)-generated flood data and provide timely and accurate flood predictions.This paper proposes a novel approach-the Adaptive Momentum and Backpropagation(AM-BP)algorithm-for flood prediction and management in IoT networks.The AM-BP model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to enhance flood prediction accuracy and efficiency.Real-world flood data is used for validation,demonstrating the superior performance of the AM-BP algorithm compared to traditional methods.In addition,multilayer high-end computing architecture(MLCA)is used to handle weather data such as rainfall,river water level,soil moisture,etc.The AM-BP’s real-time abilities enable proactive flood management,facilitating timely responses and effective disaster mitigation.Furthermore,the AM-BP algorithm can analyze large and complex datasets,integrating environmental and climatic factors for more accurate flood prediction.The evaluation result shows that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%,96.4%F1-Measure,97%Precision,and 95.9%Recall.The proposed AM-BP model presents a promising solution for flood prediction and management in IoT networks,contributing to more resilient and efficient flood control strategies,and ensuring the safety and well-being of communities at risk of flooding.展开更多
The performance of Wireless Sensor Networks(WSNs)is an important fragment of the Internet of Things(IoT),where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources.By grouping h...The performance of Wireless Sensor Networks(WSNs)is an important fragment of the Internet of Things(IoT),where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources.By grouping hubs,a clustering convention offers a useful solution for ensuring energy-saving of hubs andHybridMedia Access Control(HMAC)during the course of the organization.Nevertheless,current grouping standards suffer from issues with the grouping structure that impacts the exhibition of these conventions negatively.In this investigation,we recommend an Improved Energy-Proficient Algorithm(IEPA)for HMAC throughout the lifetime of the WSN-based IoT.Three consecutive segments are suggested.For the covering of adjusted clusters,an ideal number of clusters is determined first.Then,fair static clusters are shaped,based on an updated calculation for fluffy cluster heads,to reduce and adapt the energy use of the sensor hubs.Cluster heads(CHs)are,ultimately,selected in optimal locations,with the pivot of the cluster heads working among cluster members.Specifically,the proposed convention diminishes and balances the energy utilization of hubs by improving the grouping structure,where the IEPAis reasonable for systems that need a long time.The assessment results demonstrate that the IEPA performs better than existing conventions.展开更多
Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the co...Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the color rendering method based on deep learning,such as poor model stability,poor rendering quality,fuzzy boundaries and crossed color boundaries,we propose a novel hinge-cross-entropy generative adversarial network(HCEGAN).The self-attention mechanism was added and improved to focus on the important information of the image.And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models.In this study,we implement the HCEGAN model for image color rendering based on DIV2K and COCO datasets,and evaluate the results using SSIM and PSNR.The experimental results show that the proposed HCEGAN automatically re-renders images,significantly improves the quality of color rendering and greatly improves the stability of prior GAN models.展开更多
文摘The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
基金supported by Science and Technology Project of China Southern Power Grid Company Limited under Grant Number 036000KK52200058(GDKJXM20202001).
文摘Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61601346 and 62377039)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ6044)+2 种基金the Ministry of Industry and Information Technology of the People's Republic of China(Grant No.2023-276-1-1)the Fundamental Research Funds for the Central Universities,Northwestern Polytechnical University(Grant No.31020180QD089)the Aeronautical Science Foundation of China(Grant Nos.20200043053004 and 20200043053005)。
文摘One of the major challenges arising in internet of military things(IoMT)is accommodating massive connectivity while providing guaranteed quality of service(QoS)in terms of ultra-high reliability.In this regard,this paper presents a class of code-domain nonorthogonal multiple accesses(NOMAs)for uplink ultra reliable networking of massive IoMT based on tactical datalink such as Link-16 and joint tactical information distribution system(JTIDS).In the considered scenario,a satellite equipped with Nr antennas servers K devices including vehicles,drones,ships,sensors,handset radios,etc.Nonorthogonal coded modulation,a special form of multiple input multiple output(MIMO)-NOMA is proposed.The discussion starts with evaluating the output signal to interference-plus-noise(SINR)of receiver filter,leading to the unveiling of a closed-form expression for overloading systems as the number of users is significantly larger than the number of devices admitted such that massive connectivity is rendered.The expression allows for the development of simple yet successful interference suppression based on power allocation and phase shaping techniques that maximizes the sum rate since it is equivalent to fixed-point programming as can be proved.The proposed design is exemplified by nonlinear modulation schemes such as minimum shift keying(MSK)and Gaussian MSK(GMSK),two pivotal modulation formats in IoMT standards such as Link-16 and JITDS.Numerical results show that near capacity performance is offered.Fortunately,the performance is obtained using simple forward error corrections(FECs)of higher coding rate than existing schemes do,while the transmit power is reduced by 6 dB.The proposed design finds wide applications not only in IoMT but also in deep space communications,where ultra reliability and massive connectivity is a keen concern.
文摘IoT usage in healthcare is one of the fastest growing domains all over the world which applies to every age group.Internet of Medical Things(IoMT)bridges the gap between the medical and IoT field where medical devices communicate with each other through a wireless communication network.Advancement in IoMT makes human lives easy and better.This paper provides a comprehensive detailed literature survey to investigate different IoMT-driven applications,methodologies,and techniques to ensure the sustainability of IoMT-driven systems.The limitations of existing IoMTframeworks are also analyzed concerning their applicability in real-time driven systems or applications.In addition to this,various issues(gaps),challenges,and needs in the context of such systems are highlighted.The purpose of this paper is to interpret a rigorous review concept related to IoMT and present significant contributions in the field across the research fraternity.Lastly,this paper discusses the opportunities and prospects of IoMT and discusses various open research problems.
文摘In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time.
基金supported by Science and Technology Foundation of State Grid Corporation of China(Ubiquitous Power Internet of Things Technical Standard System)5442HL 190008National Key Research and Development Program of China(2020YFB0905900)。
文摘The ubiquitous power Internet of Things(UPIoT)is an intelligent service system with comprehensive state perception,efficient processing,and flexible application of information.It focuses on each link of the power system and makes full use of the mobile internet,artificial intelligence,and other advanced information and communication technologies in order to realize the inter-human interaction of all things in all links of the power system.This article systematically presents to the national and international organizations and agencies in charge of UPIoT layer standardization the status quo of the research on the Internet of Things(IoT)-related industry standards system.It briefly describes the generic standard classification methods,layered architecture,conceptual model,and system tables in the UPIoT application layer.Based on the principles of inheritance,innovation,and practicability,this study divides the application layer into customer service,power grid operation,integrated energy,and enterprise operation,emerging business and analyzes the standard requirements of these five fields.This study also proposes a standard plan.Finally,it summarizes the research report and provides suggestions for a follow-up work.
基金supported by the national 973 project of China under Grants 2013CB329104the Natural Science Foundation of China under Grants 61372124, 61427801+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant No.13KJB520029)the Jiangsu Province colleges and universities graduate students scientific research and innovation program CXZZ13_0477,NUPTSF(Grant No.NY214033)
文摘In Internet of Things(IoT), the devices or terminals are connected with each other, which can be very diverse over the wireless networks. Unfortunately, the current devices are not designed to communicate with the collocated devices which employ different communication technologies. Consequently, the communication between these devices will be realized only by using the gateway nodes. This will cause the inefficient use of wireless resources. Therefore, in this paper, a smart service system(SSS) architecture is proposed, which consists of smart service terminal(SST), and smart service network(SSN), to realize the Io T in a general environment with diverse communication networks, devices, and services. The proposed architecture has the following advantages: i) the devices in this architecture cover multiple types of terminals and sensor-actuator devices; ii) the communications network therein is a converged network, and will coordinate multiple kinds of existing and emerging networks. This converged network offers ubiquitous access for various sensors and terminals; iii) the architecture has services and applications covering all smart service areas. It also provides theadaptability to new services and applications. A SSS architecture-based smart campus system was developed and deployed. Evaluation experiments of the proposed smart campus system demonstrate the SSS's advantages over the existing counterparts, and verify the effectiveness of the proposed architecture.
基金This study was funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)was also supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Internet of Things(IoT)is vulnerable to data-tampering(DT)attacks.Due to resource limitations,many anomaly detection systems(ADSs)for IoT have high false positive rates when detecting DT attacks.This leads to the misreporting of normal data,which will impact the normal operation of IoT.To mitigate the impact caused by the high false positive rate of ADS,this paper proposes an ADS management scheme for clustered IoT.First,we model the data transmission and anomaly detection in clustered IoT.Then,the operation strategy of the clustered IoT is formulated as the running probabilities of all ADSs deployed on every IoT device.In the presence of a high false positive rate in ADSs,to deal with the trade-off between the security and availability of data,we develop a linear programming model referred to as a security trade-off(ST)model.Next,we develop an analysis framework for the ST model,and solve the ST model on an IoT simulation platform.Last,we reveal the effect of some factors on the maximum combined detection rate through theoretical analysis.Simulations show that the ADS management scheme can mitigate the data unavailability loss caused by the high false positive rates in ADS.
基金supported by the National Natural Science Foundation of China under Grant No.61971057。
文摘Heterogeneous base station deployment enables to provide high capacity and wide area coverage.Network slicing makes it possible to allocate wireless resource for heterogeneous services on demand.These two promising technologies contribute to the unprecedented service in 5G.We establish a multiservice heterogeneous network model,which aims to raise the transmission rate under the delay constraints for active control terminals,and optimize the energy efficiency for passive network terminals.A policygradient-based deep reinforcement learning algorithm is proposed to make decisions on user association and power control in the continuous action space.Simulation results indicate the good convergence of the algorithm,and higher reward is obtained compared with other baselines.
文摘COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.
文摘A rudimentary aspect of human life is the health of an individual,and most commonly the wellbeing is impacted in a colossal manner through the consumption of food. The intake of calories therefore is a crucial aspect that must be meticulously monitored. Various health gremlins can be largely circumvented when there is a substantial balance in the number of calories ingested versus the quantity of calories expended.The food calorie estimation is a popular domain of research in recent times and is meticulously analyzed through various image processing and machine learning techniques. However,the need to scrutinize and evaluate the calorie estimation through various platforms and algorithmic approaches aids in providing a deeper insight on the bottlenecks involved,and in improvising the bariatric health of an individual. This paper pivots on comprehending a juxtaposed approach of food calorie estimation through the use of employing Convolution Neural Network(CNN)incorporated in Internet of Things(IoT),and using the Django framework in Python,along with query rule-based training to analyze the subsequent actions to be followed post the consumption of food calories in the constructed webpage. The comparative analysis of the food calorie estimate implemented in both platforms is analyzed for the swiftness of identification,error rate and classification accuracy to appropriately determine the optimal method of use. The simulation results for IoT are carried out using the Raspberry Pi4B model,while the Anaconda prompt is used to run the server holding the web page.
文摘By the emergence of the fourth industrial revolution,interconnected devices and sensors generate large-scale,dynamic,and inharmonious data in Industrial Internet of Things(IIoT)platforms.Such vast heterogeneous data increase the challenges of security risks and data analysis procedures.As IIoT grows,cyber-attacks become more diverse and complex,making existing anomaly detection models less effective to operate.In this paper,an ensemble deep learning model that uses the benefits of the Long Short-Term Memory(LSTM)and the AutoEncoder(AE)architecture to identify out-of-norm activities for cyber threat hunting in IIoT is proposed.In this model,the LSTM is applied to create a model on normal time series of data(past and present data)to learn normal data patterns and the important features of data are identified by AE to reduce data dimension.In addition,the imbalanced nature of IIoT datasets has not been considered in most of the previous literature,affecting low accuracy and performance.To solve this problem,the proposed model extracts new balanced data from the imbalanced datasets,and these new balanced data are fed into the deep LSTM AE anomaly detection model.In this paper,the proposed model is evaluated on two real IIoT datasets-Gas Pipeline(GP)and Secure Water Treatment(SWaT)that are imbalanced and consist of long-term and short-term dependency on data.The results are compared with conventional machine learning classifiers,Random Forest(RF),Multi-Layer Perceptron(MLP),Decision Tree(DT),and Super Vector Machines(SVM),in which higher performance in terms of accuracy is obtained,99.3%and 99.7%based on GP and SWaT datasets,respectively.Moreover,the proposed ensemble model is compared with advanced related models,including Stacked Auto-Encoders(SAE),Naive Bayes(NB),Projective Adaptive Resonance Theory(PART),Convolutional Auto-Encoder(C-AE),and Package Signatures(PS)based LSTM(PS-LSTM)model.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFP2021-043).
文摘This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
基金the Universiti Teknologi Malaysia for funding this research work through the Project Number Q.J130000.2409.08G77.
文摘The Internet of Medical Things (IoMT) emerges with the visionof the Wireless Body Sensor Network (WBSN) to improve the health monitoringsystems and has an enormous impact on the healthcare system forrecognizing the levels of risk/severity factors (premature diagnosis, treatment,and supervision of chronic disease i.e., cancer) via wearable/electronic healthsensor i.e., wireless endoscopic capsule. However, AI-assisted endoscopy playsa very significant role in the detection of gastric cancer. Convolutional NeuralNetwork (CNN) has been widely used to diagnose gastric cancer based onvarious feature extraction models, consequently, limiting the identificationand categorization performance in terms of cancerous stages and gradesassociated with each type of gastric cancer. This paper proposed an optimizedAI-based approach to diagnose and assess the risk factor of gastric cancerbased on its type, stage, and grade in the endoscopic images for smarthealthcare applications. The proposed method is categorized into five phasessuch as image pre-processing, Four-Dimensional (4D) image conversion,image segmentation, K-Nearest Neighbour (K-NN) classification, and multigradingand staging of image intensities. Moreover, the performance of theproposed method has experimented on two different datasets consisting ofcolor and black and white endoscopic images. The simulation results verifiedthat the proposed approach is capable of perceiving gastric cancer with 88.09%sensitivity, 95.77% specificity, and 96.55% overall accuracy respectively.
基金This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Groups Program Grant No.(RGP-1443-0048).
文摘As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset.
基金supported by the Korea Polar Research Institute(KOPRI)grant funded by the Ministry of Oceans and Fisheries(KOPRI Project No.∗PE22900).
文摘Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The traditional flood prediction techniques often encounter challenges in accuracy,timeliness,complexity in handling dynamic flood patterns and leading to substandard flood management strategies.To address these challenges,there is a need for advanced machine learning models that can effectively analyze Internet of Things(IoT)-generated flood data and provide timely and accurate flood predictions.This paper proposes a novel approach-the Adaptive Momentum and Backpropagation(AM-BP)algorithm-for flood prediction and management in IoT networks.The AM-BP model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to enhance flood prediction accuracy and efficiency.Real-world flood data is used for validation,demonstrating the superior performance of the AM-BP algorithm compared to traditional methods.In addition,multilayer high-end computing architecture(MLCA)is used to handle weather data such as rainfall,river water level,soil moisture,etc.The AM-BP’s real-time abilities enable proactive flood management,facilitating timely responses and effective disaster mitigation.Furthermore,the AM-BP algorithm can analyze large and complex datasets,integrating environmental and climatic factors for more accurate flood prediction.The evaluation result shows that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%,96.4%F1-Measure,97%Precision,and 95.9%Recall.The proposed AM-BP model presents a promising solution for flood prediction and management in IoT networks,contributing to more resilient and efficient flood control strategies,and ensuring the safety and well-being of communities at risk of flooding.
文摘The performance of Wireless Sensor Networks(WSNs)is an important fragment of the Internet of Things(IoT),where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources.By grouping hubs,a clustering convention offers a useful solution for ensuring energy-saving of hubs andHybridMedia Access Control(HMAC)during the course of the organization.Nevertheless,current grouping standards suffer from issues with the grouping structure that impacts the exhibition of these conventions negatively.In this investigation,we recommend an Improved Energy-Proficient Algorithm(IEPA)for HMAC throughout the lifetime of the WSN-based IoT.Three consecutive segments are suggested.For the covering of adjusted clusters,an ideal number of clusters is determined first.Then,fair static clusters are shaped,based on an updated calculation for fluffy cluster heads,to reduce and adapt the energy use of the sensor hubs.Cluster heads(CHs)are,ultimately,selected in optimal locations,with the pivot of the cluster heads working among cluster members.Specifically,the proposed convention diminishes and balances the energy utilization of hubs by improving the grouping structure,where the IEPAis reasonable for systems that need a long time.The assessment results demonstrate that the IEPA performs better than existing conventions.
基金Foundation of China(No.61902311)funding for this studysupported in part by the Natural Science Foundation of Shaanxi Province in China under Grants 2022JM-508,2022JM-317 and 2019JM-162.
文摘Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient communication by highlighting important information of medical diagnosis.To overcome the limitations of the color rendering method based on deep learning,such as poor model stability,poor rendering quality,fuzzy boundaries and crossed color boundaries,we propose a novel hinge-cross-entropy generative adversarial network(HCEGAN).The self-attention mechanism was added and improved to focus on the important information of the image.And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models.In this study,we implement the HCEGAN model for image color rendering based on DIV2K and COCO datasets,and evaluate the results using SSIM and PSNR.The experimental results show that the proposed HCEGAN automatically re-renders images,significantly improves the quality of color rendering and greatly improves the stability of prior GAN models.