Passive-active control of a flexible isolation system is investigated from the viewpoint of power flow. Dynamic transfer equations of the system are deduced based on a matrix method which uses mobility or impedance re...Passive-active control of a flexible isolation system is investigated from the viewpoint of power flow. Dynamic transfer equations of the system are deduced based on a matrix method which uses mobility or impedance representations of three substructures: the source of vibration, the receiver and the mounting system which connects the source to the receiver. The cancellation of axial input forces to the receiver is considered as the active control strategy and its effects are discussed. The results of the study show that the strategy adopted herein can effectively reduce the power transmitted to the receiver.展开更多
The purpose of this study is to investigate the biomass gasification system for power supply to introduce in rural communities of developing countries.The study was conducted using biomass gasification system(20 kW)wh...The purpose of this study is to investigate the biomass gasification system for power supply to introduce in rural communities of developing countries.The study was conducted using biomass gasification system(20 kW)which developed at Ashikaga University.In general,for small scale power supply system using biomass gasification,reciprocate type engine or modified diesel engine are attached for power generation.However,biomass gasifier produces tar and it causes problems on smooth movement of piston in the reciprocate engine.To avoid effect by tar,the system is comprised the rotary engine coupled to a generator since there is no piston inside the engine.As for gasification system,downdraft gasifier is designed and installed.In this study woody biomass was gasified.The gasifier performance was evaluated with respect to fuel consumption rate.The rotary engine-generator system was evaluated in terms of power generation efficiency.Result of this study shows that fuel consumption rate was about 30 kg/h,gasification efficiency was about 63.4%and efficiency of rotary engine system was about 9.4%.展开更多
This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind power.The proposed frequency control strategy is based on the nov...This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind power.The proposed frequency control strategy is based on the novel nonlinear regulator theory,which takes advantage of nonlinearity of doubly fed induction generators(DFIGs)and generators to regulate the frequency of the power system.Frequency deviations and power imbalances are used to design nonlinear feedback controllers that achieve the reserve power distribution between generators and DFIGs,in various wind speed scenarios.The effectiveness and dynamic performance of the proposed nonlinear coordinated frequency control method are validated through simulations in an actual isolated power grid.展开更多
Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dyn...Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dynamic performance. Furthermore, to minimize the system oscillations, SMES (super-conducting magnetic energy storage) with first order lead-lag controller is implemented to supply and absorb active power quickly trying to reach power generation/demand balance and thereby control system frequency. Minimization of frequency and wind output power deviations are considered as two objective functions for the PID controller of wind turbine. Also, mitigating frequency and diesel output power deviations are presented as two objective functions of the lead-lag controller of SMES. NSGA-II (modified version of non-dominated sorting genetic algorithm) is used to tune the controllers' parameters to get an optimal response. The effectiveness and robustness of the proposed control technique are investigated under different operating conditions using Matlab environment. The simulation results confirm the ability of the controllers to damp all frequency and output powers fluctuations and enhance the stability and reliability of the hybrid power system.展开更多
This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STAT- COM) with frequent disturbances in load model and power in...This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STAT- COM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.展开更多
It is well recognized that the voltage stability of a power system is affected by the load model and hence, to effectively analyze the reactive power compensation of an isolated hybrid wind-diesel based power system, ...It is well recognized that the voltage stability of a power system is affected by the load model and hence, to effectively analyze the reactive power compensation of an isolated hybrid wind-diesel based power system, the loads need to be considered along with the generators in a transient analysis. This paper gives a detailed mathematical modeling to compute the reactive power response with small voltage perturbation for composite load. The composite load is a combination of the static and dynamic load model. To develop this composite load model, the exponential load is used as a static load model and induction motors (IMs) are used as a dynamic load model. To analyze the dynamics of IM load, the fifth, third and first order model of IM are formulated and compared using differential equations solver in Matlab coding. Since the decentralized areas have many small consumers which may consist large numbers of IMs of small rating, it is not realistic to model either a single large rating unit or all small rating IMs together that are placed in the system. In place of using a single large rating IM, a group of motors are considered and then the aggregate model of IM is developed using the law of energy conservation. This aggregate model is used as a dynamic load model. For different simulation studies, especially in the area of voltage stability with reactive power compensation of an isolated hybrid power system, the transfer function AQ/AV of the composite load is required. The transfer function of the composite load is derived in this paper by successive derivation for the exponential model of static load and for the fifth and third order IM dynamic load model using state space model.展开更多
基金National Natural Science Foundation of China (No.50275085)
文摘Passive-active control of a flexible isolation system is investigated from the viewpoint of power flow. Dynamic transfer equations of the system are deduced based on a matrix method which uses mobility or impedance representations of three substructures: the source of vibration, the receiver and the mounting system which connects the source to the receiver. The cancellation of axial input forces to the receiver is considered as the active control strategy and its effects are discussed. The results of the study show that the strategy adopted herein can effectively reduce the power transmitted to the receiver.
文摘The purpose of this study is to investigate the biomass gasification system for power supply to introduce in rural communities of developing countries.The study was conducted using biomass gasification system(20 kW)which developed at Ashikaga University.In general,for small scale power supply system using biomass gasification,reciprocate type engine or modified diesel engine are attached for power generation.However,biomass gasifier produces tar and it causes problems on smooth movement of piston in the reciprocate engine.To avoid effect by tar,the system is comprised the rotary engine coupled to a generator since there is no piston inside the engine.As for gasification system,downdraft gasifier is designed and installed.In this study woody biomass was gasified.The gasifier performance was evaluated with respect to fuel consumption rate.The rotary engine-generator system was evaluated in terms of power generation efficiency.Result of this study shows that fuel consumption rate was about 30 kg/h,gasification efficiency was about 63.4%and efficiency of rotary engine system was about 9.4%.
基金supported by National Natural Science Foundation of China(U2066601).
文摘This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind power.The proposed frequency control strategy is based on the novel nonlinear regulator theory,which takes advantage of nonlinearity of doubly fed induction generators(DFIGs)and generators to regulate the frequency of the power system.Frequency deviations and power imbalances are used to design nonlinear feedback controllers that achieve the reserve power distribution between generators and DFIGs,in various wind speed scenarios.The effectiveness and dynamic performance of the proposed nonlinear coordinated frequency control method are validated through simulations in an actual isolated power grid.
文摘Robust control approach of hybrid wind-diesel power system is proposed in this paper. PID (proportional integral derivative) controller is designed in the blade pitch system of wind turbine to improve the system dynamic performance. Furthermore, to minimize the system oscillations, SMES (super-conducting magnetic energy storage) with first order lead-lag controller is implemented to supply and absorb active power quickly trying to reach power generation/demand balance and thereby control system frequency. Minimization of frequency and wind output power deviations are considered as two objective functions for the PID controller of wind turbine. Also, mitigating frequency and diesel output power deviations are presented as two objective functions of the lead-lag controller of SMES. NSGA-II (modified version of non-dominated sorting genetic algorithm) is used to tune the controllers' parameters to get an optimal response. The effectiveness and robustness of the proposed control technique are investigated under different operating conditions using Matlab environment. The simulation results confirm the ability of the controllers to damp all frequency and output powers fluctuations and enhance the stability and reliability of the hybrid power system.
文摘This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STAT- COM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at t = 0 s and then a sudden change of 3% from the 1% at t = 0.01 s for a 1% step increase in power input at variable wind speed model.
文摘It is well recognized that the voltage stability of a power system is affected by the load model and hence, to effectively analyze the reactive power compensation of an isolated hybrid wind-diesel based power system, the loads need to be considered along with the generators in a transient analysis. This paper gives a detailed mathematical modeling to compute the reactive power response with small voltage perturbation for composite load. The composite load is a combination of the static and dynamic load model. To develop this composite load model, the exponential load is used as a static load model and induction motors (IMs) are used as a dynamic load model. To analyze the dynamics of IM load, the fifth, third and first order model of IM are formulated and compared using differential equations solver in Matlab coding. Since the decentralized areas have many small consumers which may consist large numbers of IMs of small rating, it is not realistic to model either a single large rating unit or all small rating IMs together that are placed in the system. In place of using a single large rating IM, a group of motors are considered and then the aggregate model of IM is developed using the law of energy conservation. This aggregate model is used as a dynamic load model. For different simulation studies, especially in the area of voltage stability with reactive power compensation of an isolated hybrid power system, the transfer function AQ/AV of the composite load is required. The transfer function of the composite load is derived in this paper by successive derivation for the exponential model of static load and for the fifth and third order IM dynamic load model using state space model.