A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces com...A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces computation time by 10.7% compared with previous methods. Furthermore,a primary input critical factor model that captures the extent of primary inputs' PSN contribution is formulated. Based on these models,a novel niche genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this novel method can achieve up to 19.0% improvement on PSN estimation with a much higher convergence speed.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
An optimal method for prediction and adjustment on byproduct gasholder level and self-provided power plant gas supply was proposed.This work raises the HP-ENN-LSSVM model based on the Hodrick-Prescott filter,Elman neu...An optimal method for prediction and adjustment on byproduct gasholder level and self-provided power plant gas supply was proposed.This work raises the HP-ENN-LSSVM model based on the Hodrick-Prescott filter,Elman neural network and least squares support vector machines.Then,according to the prediction,the optimal adjustment process came up by a novel reasoning method to sustain the gasholder within safety zone and the self-provided power plant boilers in economic operation,and prevent unfavorable byproduct gas emission and equipment trip as well.The experiments using the practical production data show that the proposed method achieves high accurate predictions and the optimal byproduct gas distribution,which provides a remarkable guidance for reasonable scheduling of byproduct gas.展开更多
Variable supply voltage-clustered voltage scaling (VS-CVS) scheme can be very effective in reducing power consumption of CMOS circuits without degrading system performance. Level converting flip-flops (LCFFs) are ...Variable supply voltage-clustered voltage scaling (VS-CVS) scheme can be very effective in reducing power consumption of CMOS circuits without degrading system performance. Level converting flip-flops (LCFFs) are key elements in the CVS scheme. In this paper, a new explicit-pulsed double-edge triggered level converting flip-flop (nEP-DET-LCFF) is proposed, which employs double-edge triggering technique, dynamic structure, explicit pulse generator, conditional discharge technique and proper arrangement of stacked nMOS transistors to efficiently perform latching and level converting functions simultaneously. The proposed nEP-DET-LCFF combines merits of both conventional explicit-LCFFs and implicit-LCFFs. Simulation shows the proposed nEP-DET-LCFF has improvement of 19.2% -46% in delay, and 19.4% - 52.9% in power-delay product (PDP) as compared with the published LCFFs.展开更多
Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference t...Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference time-domain method.Optical power limiting behavior induced by strong nonlinear two-photon absorption is observed for different orders of the femtosecond hyper-Gaussian pulses. Pulses of a higher order temporal profile are found to have a wider power range of optical limiting but a larger output saturation intensity. Both the output saturation value and the damage threshold of optical power limiting decrease with pulse duration increasing. The decrease of the pulse area along the pulse propagation is much slower than that obtained from the two-photon area theorem due to invalidity of the slowly varying amplitude approximation and the monochromatic field hypothesis.展开更多
In this work,author expressed new R-Synthesis specifically.Good and/or correct perspective that must be behind the definitions and administration generally expressed.New perspective of the philosophy explained general...In this work,author expressed new R-Synthesis specifically.Good and/or correct perspective that must be behind the definitions and administration generally expressed.New perspective of the philosophy explained generally.Philosophy of GodForm is defined and expressed as connected/related with the following concepts:(a)basic principles,(b)17 upper constructional philosophies,(c)14 lower constructional philosophies,(d)eight basic philosophies.As special cases,Philosophy of Engineering and Technology,Philosophy of Wireless Administration and others defined as hybrid philosophies.17 specific components/units which can be considered to define the basic principles of the related formation,are proposed to be designed by GodForm and defined by the author.Philosophy of GodForm and its relation with Values and Positions specifically defined.New Era Theory and New Era Belief explained generally.Some specific religions/beliefs are defined as variants/forms of the Progressive Religion.Good and/or correct power authorities(R-Power Authority)are defined due to 29 categories.Functional position levels defined for the R-Power Authorities with a unique table.As result of the R-Synthesis,functional position levels of some philosophers,some scientists,and of Prophet Jesus,Prophet Mohamed,Prophets Mouses,Buddha,and of Confucius generally/specifically defined.Integration and past/present effects of some R-Power Authorities in 5 x 5 Ideal Political Construction specifically explained.New Era Belief,Concepts of GodX and Science relation explained with the following concepts:(1)Religion of GodForm,(2)Knowledge of GodX,(3)Nature of GodX.With this respect,some other characteristics of 7 GodX power authorities expressed with details as complementary information.Following concepts/systems defined to arrange and solve some/most/all religious problems,which are determined with R-Synthesis:(a)Religious Responsibilities and Positions,(b)Ideal Religious Administration,(c)Sustainable/Continuable Political Administration System,(d)Community Values Council/Authority for each world country,(e)Progressive Councils.15 general religious position categories defined to express their good and/or correct meanings/values/responsibilities in the religious system.21 general/specific cases/programs defined due to New Era Belief to solve possible past/present/future community values problems,to have continuous,judicious,and progressive administration about the 36 kinds of community values.Progressive Councils,which are related with the CUS-WW-HO,are defined.Progressive Religion Council and some of the related religious responsibilities expressed for the kind progressive religion studies due to the Philosophy of Progressive Religions.展开更多
New low-power Level Shifter (LS) circuit is designed by using sleep transistor with Multi Threshold CMOS (MTCMOS) technique for robust logic voltage shifting from sub-threshold to above- threshold domain. MultiSupply ...New low-power Level Shifter (LS) circuit is designed by using sleep transistor with Multi Threshold CMOS (MTCMOS) technique for robust logic voltage shifting from sub-threshold to above- threshold domain. MultiSupply Voltage Design (MSVD) technique is mainly used for energy and speed in modern system-on-chip. In MSVD, level shifters are required to allow different voltage supply to shift from the lower power supply voltage to the higher power supply voltage. This new low-power level shifter circuit is also used for fast response and low leakage power consumption. This low leakage power consumption can be achieved through insertion of sleep transistor and proper transistors sizing. The proposed design efficiently converts 100 mv input signal into 1 v output signal and achieves the power of 2.56 nW by using 90 nm technology.展开更多
Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbin...Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.展开更多
The radioactivity level of the ambient environment of Anren Bone-coal Power Station (BCPS) was investigated systematically. The γ radiation dose rate level in the environment, the content of 238U and 226Ra in the amb...The radioactivity level of the ambient environment of Anren Bone-coal Power Station (BCPS) was investigated systematically. The γ radiation dose rate level in the environment, the content of 238U and 226Ra in the ambient soil and the farmland in the direction of downwind, the concentrations of 238U. 232Th. 226Ra 40K and 222Rn as well as α potential energy in air, and the concentrations of natural U and Th in effluent are all higher than the corresponding values of the reference site. The additional annual effective dose equivalent to the residents living in the houses made of bone-coal cinder brick is 2.7 mSv.展开更多
This paper presents a method for optimizing a grid-connected photovoltaic system through an LCL filter. An algorithm based on particle swarm optimization (PSO) is used to determine the number of batteries, the number ...This paper presents a method for optimizing a grid-connected photovoltaic system through an LCL filter. An algorithm based on particle swarm optimization (PSO) is used to determine the number of batteries, the number of panels in series and in parallel, as well as to evaluate the joule losses due to cable heating and the switching losses of the multilevel inverters. This system is applied to a village named YAGOUA, located in the far north of Cameroon. The evaluation of the Joule effect and the switching losses as well as the regulation of the voltage level at the point of common coupling (PCC) are carried out in PVsyst and Matlab software, then at IEEE 33 bus. This algorithm reduced the Joule losses to 1.2% and the switching losses to 2.2%. A power of 210.4 MWh is produced, to be injected in the electrical network via an LCL filter. The THD calculation gave a rate of 3.015% in accordance with the 519 standards. Synchronization through the Phase Locked Loop (PLL) is performed. After the power was injected into the grid, the voltage and current remained in phase, showing the power factor correction and the efficiency of the filter. According to NASA meteorological data, the locality of YAGOUA gives the global solar irradiation forecast of 6.8 kW/m2.展开更多
Due to its inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates in building next generation nuclear plants (NGNPs). Since the MHTGR dynamics has ...Due to its inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates in building next generation nuclear plants (NGNPs). Since the MHTGR dynamics has high nonlinearity, it is necessary to develop nonlinear power-level controller which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR but also easy to be implemented practically. In this paper, based on the concept of shiftedectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD) output-feedback power-level control can provide globally asymptotic closed-loop stability. Numerical simulation results verify the theoretical results and show the influence of the controller parameters to the dynamic response.展开更多
The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to th...The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to the conducting-state,when the anode voltage in the forward blocking-state is increased to a critical value. The RSP I-V characteristics of the power SITH are analyzed in terms of operating mechanism, double carrier injection effect, space charge effect, electron-hole plasma in the channel, and the variation in carrier lifetime. The reverse snapback mechanism is theoretically pro- posed and the mathematical expressions to calculate the voltage and current values at the snapback point are presented. The computing results are compared with the experiment values.展开更多
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl...North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.展开更多
Massive machine-type communication(m MTC)is a typical application scenario of the fifth generation(5G)mobile communications.To keep the m MTC reliable and minimize the energy consumption of the m MTC devices,this pape...Massive machine-type communication(m MTC)is a typical application scenario of the fifth generation(5G)mobile communications.To keep the m MTC reliable and minimize the energy consumption of the m MTC devices,this paper proposes an enhanced power choice barring(EPCB)scheme based on the distributed layered grant-free non-orthogonal multiple access(NOMA)framework,where the cell is divided into different layers according to a predetermined power levels.The proposed EPCB scheme not only combines the grant-free strategy with the sleep mode to reduce the energy consumption,but also designs a power level choosing strategy to increase the access success probability.Simulation results show that when compared with existing schemes,the proposed EPCB scheme has better performance in the aspects of the access success probability and energy efficiency.展开更多
In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relat...In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.展开更多
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ...In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.展开更多
To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits an...To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.展开更多
文摘A gate level maximum power supply noise (PSN) model is defined that captures both IR drop and di/dt noise effects. Experimental results show that this model improves PSN estimation by 5.3% on average and reduces computation time by 10.7% compared with previous methods. Furthermore,a primary input critical factor model that captures the extent of primary inputs' PSN contribution is formulated. Based on these models,a novel niche genetic algorithm is proposed to estimate PSN more effectively. Compared with general genetic algorithms, this novel method can achieve up to 19.0% improvement on PSN estimation with a much higher convergence speed.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.
基金Project(51066002/E060701) supported by the National Natural Science Foundation of ChinaProject(U0937604) supported by the NSFC-Yunnan Joint Fund of China
文摘An optimal method for prediction and adjustment on byproduct gasholder level and self-provided power plant gas supply was proposed.This work raises the HP-ENN-LSSVM model based on the Hodrick-Prescott filter,Elman neural network and least squares support vector machines.Then,according to the prediction,the optimal adjustment process came up by a novel reasoning method to sustain the gasholder within safety zone and the self-provided power plant boilers in economic operation,and prevent unfavorable byproduct gas emission and equipment trip as well.The experiments using the practical production data show that the proposed method achieves high accurate predictions and the optimal byproduct gas distribution,which provides a remarkable guidance for reasonable scheduling of byproduct gas.
基金Supported by the National Natural Science Foundation of China (No.60503027) Acknowledgements: The authors are grateful to Prof. Zhao PeiYi of Chapman University, Orange, USA, for beneficial discussions.
文摘Variable supply voltage-clustered voltage scaling (VS-CVS) scheme can be very effective in reducing power consumption of CMOS circuits without degrading system performance. Level converting flip-flops (LCFFs) are key elements in the CVS scheme. In this paper, a new explicit-pulsed double-edge triggered level converting flip-flop (nEP-DET-LCFF) is proposed, which employs double-edge triggering technique, dynamic structure, explicit pulse generator, conditional discharge technique and proper arrangement of stacked nMOS transistors to efficiently perform latching and level converting functions simultaneously. The proposed nEP-DET-LCFF combines merits of both conventional explicit-LCFFs and implicit-LCFFs. Simulation shows the proposed nEP-DET-LCFF has improvement of 19.2% -46% in delay, and 19.4% - 52.9% in power-delay product (PDP) as compared with the published LCFFs.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574082)the Fundamental Research Funds for the Central Universities,China(Grant No.2018MS050)
文摘Propagation of strong femtosecond hyper-Gaussian pulses in a cascade three-level molecular system is studied by solving numerically the Maxwell–Bloch equations by the iterative predictor-corrector finite-difference time-domain method.Optical power limiting behavior induced by strong nonlinear two-photon absorption is observed for different orders of the femtosecond hyper-Gaussian pulses. Pulses of a higher order temporal profile are found to have a wider power range of optical limiting but a larger output saturation intensity. Both the output saturation value and the damage threshold of optical power limiting decrease with pulse duration increasing. The decrease of the pulse area along the pulse propagation is much slower than that obtained from the two-photon area theorem due to invalidity of the slowly varying amplitude approximation and the monochromatic field hypothesis.
文摘In this work,author expressed new R-Synthesis specifically.Good and/or correct perspective that must be behind the definitions and administration generally expressed.New perspective of the philosophy explained generally.Philosophy of GodForm is defined and expressed as connected/related with the following concepts:(a)basic principles,(b)17 upper constructional philosophies,(c)14 lower constructional philosophies,(d)eight basic philosophies.As special cases,Philosophy of Engineering and Technology,Philosophy of Wireless Administration and others defined as hybrid philosophies.17 specific components/units which can be considered to define the basic principles of the related formation,are proposed to be designed by GodForm and defined by the author.Philosophy of GodForm and its relation with Values and Positions specifically defined.New Era Theory and New Era Belief explained generally.Some specific religions/beliefs are defined as variants/forms of the Progressive Religion.Good and/or correct power authorities(R-Power Authority)are defined due to 29 categories.Functional position levels defined for the R-Power Authorities with a unique table.As result of the R-Synthesis,functional position levels of some philosophers,some scientists,and of Prophet Jesus,Prophet Mohamed,Prophets Mouses,Buddha,and of Confucius generally/specifically defined.Integration and past/present effects of some R-Power Authorities in 5 x 5 Ideal Political Construction specifically explained.New Era Belief,Concepts of GodX and Science relation explained with the following concepts:(1)Religion of GodForm,(2)Knowledge of GodX,(3)Nature of GodX.With this respect,some other characteristics of 7 GodX power authorities expressed with details as complementary information.Following concepts/systems defined to arrange and solve some/most/all religious problems,which are determined with R-Synthesis:(a)Religious Responsibilities and Positions,(b)Ideal Religious Administration,(c)Sustainable/Continuable Political Administration System,(d)Community Values Council/Authority for each world country,(e)Progressive Councils.15 general religious position categories defined to express their good and/or correct meanings/values/responsibilities in the religious system.21 general/specific cases/programs defined due to New Era Belief to solve possible past/present/future community values problems,to have continuous,judicious,and progressive administration about the 36 kinds of community values.Progressive Councils,which are related with the CUS-WW-HO,are defined.Progressive Religion Council and some of the related religious responsibilities expressed for the kind progressive religion studies due to the Philosophy of Progressive Religions.
文摘New low-power Level Shifter (LS) circuit is designed by using sleep transistor with Multi Threshold CMOS (MTCMOS) technique for robust logic voltage shifting from sub-threshold to above- threshold domain. MultiSupply Voltage Design (MSVD) technique is mainly used for energy and speed in modern system-on-chip. In MSVD, level shifters are required to allow different voltage supply to shift from the lower power supply voltage to the higher power supply voltage. This new low-power level shifter circuit is also used for fast response and low leakage power consumption. This low leakage power consumption can be achieved through insertion of sleep transistor and proper transistors sizing. The proposed design efficiently converts 100 mv input signal into 1 v output signal and achieves the power of 2.56 nW by using 90 nm technology.
文摘Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.
文摘The radioactivity level of the ambient environment of Anren Bone-coal Power Station (BCPS) was investigated systematically. The γ radiation dose rate level in the environment, the content of 238U and 226Ra in the ambient soil and the farmland in the direction of downwind, the concentrations of 238U. 232Th. 226Ra 40K and 222Rn as well as α potential energy in air, and the concentrations of natural U and Th in effluent are all higher than the corresponding values of the reference site. The additional annual effective dose equivalent to the residents living in the houses made of bone-coal cinder brick is 2.7 mSv.
文摘This paper presents a method for optimizing a grid-connected photovoltaic system through an LCL filter. An algorithm based on particle swarm optimization (PSO) is used to determine the number of batteries, the number of panels in series and in parallel, as well as to evaluate the joule losses due to cable heating and the switching losses of the multilevel inverters. This system is applied to a village named YAGOUA, located in the far north of Cameroon. The evaluation of the Joule effect and the switching losses as well as the regulation of the voltage level at the point of common coupling (PCC) are carried out in PVsyst and Matlab software, then at IEEE 33 bus. This algorithm reduced the Joule losses to 1.2% and the switching losses to 2.2%. A power of 210.4 MWh is produced, to be injected in the electrical network via an LCL filter. The THD calculation gave a rate of 3.015% in accordance with the 519 standards. Synchronization through the Phase Locked Loop (PLL) is performed. After the power was injected into the grid, the voltage and current remained in phase, showing the power factor correction and the efficiency of the filter. According to NASA meteorological data, the locality of YAGOUA gives the global solar irradiation forecast of 6.8 kW/m2.
文摘Due to its inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates in building next generation nuclear plants (NGNPs). Since the MHTGR dynamics has high nonlinearity, it is necessary to develop nonlinear power-level controller which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR but also easy to be implemented practically. In this paper, based on the concept of shiftedectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD) output-feedback power-level control can provide globally asymptotic closed-loop stability. Numerical simulation results verify the theoretical results and show the influence of the controller parameters to the dynamic response.
文摘The reverse snapback phenomena (RSP) on I-V characteristics of static induction thyristors (SITH) are physically researched. The I-V curves of the power SITH exhibit reverse snapback phenomena, and even turn to the conducting-state,when the anode voltage in the forward blocking-state is increased to a critical value. The RSP I-V characteristics of the power SITH are analyzed in terms of operating mechanism, double carrier injection effect, space charge effect, electron-hole plasma in the channel, and the variation in carrier lifetime. The reverse snapback mechanism is theoretically pro- posed and the mathematical expressions to calculate the voltage and current values at the snapback point are presented. The computing results are compared with the experiment values.
基金Supported by the Science and Technology Foundation of SGCC(Large-scale development and utilization mode of solar energy in North Africa under the condition of transcontinental grid interconnection:NY71-18-004)the Science and Technology Foundation of GEI(Research on Large-scale Solar Energy Development in West-Asia and North-Africa:NYN11201805034)
文摘North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.
基金supported by the NSFC projects(6217011870,and 61971136)Zhishan Youth Scholar Program of SEU,the Fundamental Research Funds for the Central UniversitiesYoung Elite Scientist Sponsorship Program by CAST(YESS20160042)。
文摘Massive machine-type communication(m MTC)is a typical application scenario of the fifth generation(5G)mobile communications.To keep the m MTC reliable and minimize the energy consumption of the m MTC devices,this paper proposes an enhanced power choice barring(EPCB)scheme based on the distributed layered grant-free non-orthogonal multiple access(NOMA)framework,where the cell is divided into different layers according to a predetermined power levels.The proposed EPCB scheme not only combines the grant-free strategy with the sleep mode to reduce the energy consumption,but also designs a power level choosing strategy to increase the access success probability.Simulation results show that when compared with existing schemes,the proposed EPCB scheme has better performance in the aspects of the access success probability and energy efficiency.
基金supported by the National Natural Science Foundation of China (Grant No.12072114)the National Key Research and Development Plan (Grant No.2020YFB1709401)the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003).
文摘In this paper,we consider solving the topology optimization for steady-state incompressibleNavier-Stokes problems via a new topology optimization method called parameterized level set method,which can maintain a relatively smooth level set function with a local optimality condition.The objective of topology optimization is tond an optimal conguration of theuid and solid materials that minimizes power dissipation under a prescribeduid volume fraction constraint.An articial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition.Although a great deal of work has been carried out for topology optimization ofuidow in recent years,there are few researches on the topology optimization ofuidow with physical body forces.To simulate theuidow in reality,the constant body force(e.g.,gravity)is considered in this paper.Several 2D numerical examples are presented to discuss the relationships between the proposed method with Reynolds number and initial design,and demonstrate the feasibility and superiority of the proposed method in dealing with unstructuredmesh problems.Three 3D numerical examples demonstrate the proposedmethod is feasible in three-dimensional.
基金National Natural Science Foundation of China(No.519667013)
文摘In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.
基金Supported by the National Natural Science Foundation of China (61101129)Specialized Research Fund for the Doctoral Program of Higher Education(20091101110019)
文摘To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.