This paper presents the existing state anddevelopment planning of East China PowerSystem, which refers to load, power source,power network, system protection, dispatchautomation and system communication.
The purpose of the paper is to develop a solution for application of PV (photovoltaic) generators in MV (medium voltage) distribution system without unacceptable voltage changes due to drops of PV power output. Th...The purpose of the paper is to develop a solution for application of PV (photovoltaic) generators in MV (medium voltage) distribution system without unacceptable voltage changes due to drops of PV power output. The proposed solution includes operation of PV with predetermined leading power factor and addition of a capacitor bank in parallel to PV plant in order to compensate the reactive power absorbed by the PV inverters. The analytical expression of required power factor angle is derived. Adding a capacitor bank in parallel to PV power plant may pose a problem because of space limitations. The dimensions and cost of small MV capacitor banks depend significantly on the capacitor bank protection against internal faults. Application of the developed negative-sequence current difference method for the unbalance protection of the capacitor banks enables to achieve a compact and cost-reduced design of the banks connected in parallel to PV power plants. A real-world example of operation of the PV plant in parallel to the capacitor bank with the novel protection scheme is described.展开更多
文摘This paper presents the existing state anddevelopment planning of East China PowerSystem, which refers to load, power source,power network, system protection, dispatchautomation and system communication.
文摘The purpose of the paper is to develop a solution for application of PV (photovoltaic) generators in MV (medium voltage) distribution system without unacceptable voltage changes due to drops of PV power output. The proposed solution includes operation of PV with predetermined leading power factor and addition of a capacitor bank in parallel to PV plant in order to compensate the reactive power absorbed by the PV inverters. The analytical expression of required power factor angle is derived. Adding a capacitor bank in parallel to PV power plant may pose a problem because of space limitations. The dimensions and cost of small MV capacitor banks depend significantly on the capacitor bank protection against internal faults. Application of the developed negative-sequence current difference method for the unbalance protection of the capacitor banks enables to achieve a compact and cost-reduced design of the banks connected in parallel to PV power plants. A real-world example of operation of the PV plant in parallel to the capacitor bank with the novel protection scheme is described.