As Moore’s law approaching its end,electronics is hitting its power,bandwidth,and capacity limits.Photonics is able to overcome the performance limits of electronics but lacks practical photonic register and flexible...As Moore’s law approaching its end,electronics is hitting its power,bandwidth,and capacity limits.Photonics is able to overcome the performance limits of electronics but lacks practical photonic register and flexible control.Combining electronics and photonics provides the best of both worlds and is widely regarded as an important post-Moore’s direction.For stability and dynamic operations considerations,feedback tuning of photonic devices is required.For silicon photonics,the thermooptic effect is the most frequently used tuning mechanism due to the advantages of high efficiency and low loss.However,it brings new design requirements,creating new design challenges.Emerging applications,such as optical phased array,optical switches,and optical neural networks,employ a large number of photonic devices,making PCB tuning solutions no longer suitable.Electronic-photonic-converged solutions with compact footprints will play an important role in system scalability.In this paper,we present a unified model for thermo-optic feedback tuning that can be specialized to different applications,review its recent advances,and discuss its future trends.展开更多
According to the requirements of the bus terminal regulator,a linear regulator with 3-A source-sink current ability is presented.The use of the NMOS pass transistor and load current feedback technique enhances the sys...According to the requirements of the bus terminal regulator,a linear regulator with 3-A source-sink current ability is presented.The use of the NMOS pass transistor and load current feedback technique enhances the system current ability and response speed.The method of adaptive zero compensation realizes loop stability over the whole load range for either source or sink loop.Furthermore,the transconductance matching technique reduces the shoot-through current through the output stage to less than 3μA.The regulator has been fabricated with a 0.6-μm 30 V BCD process successfully,and the area size is about 1 mm;.With a 20μF output capacitor, the maximum transient output-voltage variation is within 3.5%of the output voltage with load step changes of±2 A/lμs.At the load range of±3 A,the variation of output voltage is less than±15 mV.展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2018YFA0704400).
文摘As Moore’s law approaching its end,electronics is hitting its power,bandwidth,and capacity limits.Photonics is able to overcome the performance limits of electronics but lacks practical photonic register and flexible control.Combining electronics and photonics provides the best of both worlds and is widely regarded as an important post-Moore’s direction.For stability and dynamic operations considerations,feedback tuning of photonic devices is required.For silicon photonics,the thermooptic effect is the most frequently used tuning mechanism due to the advantages of high efficiency and low loss.However,it brings new design requirements,creating new design challenges.Emerging applications,such as optical phased array,optical switches,and optical neural networks,employ a large number of photonic devices,making PCB tuning solutions no longer suitable.Electronic-photonic-converged solutions with compact footprints will play an important role in system scalability.In this paper,we present a unified model for thermo-optic feedback tuning that can be specialized to different applications,review its recent advances,and discuss its future trends.
基金supported by the National Natural Science Foundation of China(Nos.60806043,60806009)the Special Fund for Basic Scientific Research of Central Colleges Chang'an University,China(No.CHD2010JC077)the Key Laboratory Foundation of Shaanxi Engineering and Technique Research Center for Road and Traffic Detection,China
文摘According to the requirements of the bus terminal regulator,a linear regulator with 3-A source-sink current ability is presented.The use of the NMOS pass transistor and load current feedback technique enhances the system current ability and response speed.The method of adaptive zero compensation realizes loop stability over the whole load range for either source or sink loop.Furthermore,the transconductance matching technique reduces the shoot-through current through the output stage to less than 3μA.The regulator has been fabricated with a 0.6-μm 30 V BCD process successfully,and the area size is about 1 mm;.With a 20μF output capacitor, the maximum transient output-voltage variation is within 3.5%of the output voltage with load step changes of±2 A/lμs.At the load range of±3 A,the variation of output voltage is less than±15 mV.