The fabrication and characterization of 1700 V 7 A 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) are reported. The drift layer is 17μm in thickness with 5 × 10...The fabrication and characterization of 1700 V 7 A 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) are reported. The drift layer is 17μm in thickness with 5 × 10^15 cm^-3 n-type doping, and the channel length is 1μm. The MOSFETs show a peak mobility of 17cm2/V.s and a typical threshold voltage of 3 V. The active area of 0.028cm2 delivers a forward drain current of 7A at Vcs = 22 V and VDS= 15 V. The specific on-resistance (Ron,sv) is 18mΩ.cm2 at VGS= 22 V and the blocking voltage is 1975 V (IDS 〈 lOOnA) at VGS = 0 V.展开更多
A novel simulation program with an integrated circuit emphasis(SPICE) model developed for trench-gate metal-oxide-semiconductor field-effect transistor(M OSFET)devices is proposed. The drift region resistance was ...A novel simulation program with an integrated circuit emphasis(SPICE) model developed for trench-gate metal-oxide-semiconductor field-effect transistor(M OSFET)devices is proposed. The drift region resistance was modeled according to the physical characteristics and the specific structure of the trench-gate MOSFET device. For the accurate simulation of dynamic characteristics, three important capacitances, gate-to-drain capacitance Cgd, gate-to-source capacitance Cgsand drain-to-source capacitance Cds, were modeled, respectively, in the proposed model. Furthermore,the self-heating effect, temperature effect and breakdown characteristic were taken into account; the self-heating model and breakdown model were built in the proposed model; and the temperature parameters of the model were revised. The proposed model is verified by experimental results, and the errors between measured data and simulation results of the novel model are less than 5%. Therefore, the model can give an accurate description for both the static and dynamic characteristics of the trench-gate MOSFET device.展开更多
Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor ...Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor (PMOSFET), analytical expressions of the threshold voltages for buried channel and surface channel are presented. And the maximum allowed thickness of s-Si is given, which can ensure that the strong inversion appears earlier in the buried channel (compressive strained SiGe) than in the surface channel (tensile strained Si), because the hole mobility in the buried channel is higher than that in the surface channel. Thus they offer a good accuracy as compared with the results of device simulator ISE. With this model, the variations of threshold voltage and maximum allowed thickness of s-Si with design parameters can be predicted, such as Ge fraction, layer thickness, and doping concentration. This model can serve as a useful tool for p-channel s-Si/s-SiGe/Si1-yGey metal-oxide-semiconductor field-effect transistor (MOSFET) designs.展开更多
Growing a silicon(Si) layer on top of stacked Si-germanium(Ge) compressive layer can introduce a tensile strain on the former, resulting in superior device characteristics. Such a structure can be used for high perfor...Growing a silicon(Si) layer on top of stacked Si-germanium(Ge) compressive layer can introduce a tensile strain on the former, resulting in superior device characteristics. Such a structure can be used for high performance complementary metal-oxide-semiconductor(CMOS) circuits. Down scaling metal-oxide-semiconductor field-effect transistors(MOSFETs) into the deep submicron/nanometer regime forces the source(S) and drain(D) series resistance to become comparable with the channel resistance and thus it cannot be neglected. Owing to the persisting technological importance of strained Si devices, in this work, we propose a multi-iterative technique for evaluating the performance of strained-Si/strained-Si_(1-y)Ge_y/relaxed-Si_(1-x)Ge_x MOSFETs and its related circuits in the presence of S/D series resistance, leading to the development of a simulator that can faithfully plot the performance of the device and related digital circuits. The impact of strain on device/circuit performance is also investigated with emphasis on metal gate and high-k dielectric materials.展开更多
As dimensions of the metal-oxide-semiconductor field-effect transistor (MOSFET) are scaling down and the thickness of gate oxide is decreased,the gate leakage becomes more and more prominent and has been one of the mo...As dimensions of the metal-oxide-semiconductor field-effect transistor (MOSFET) are scaling down and the thickness of gate oxide is decreased,the gate leakage becomes more and more prominent and has been one of the most important limiting factors to MOSFET and circuits lifetime.Based on reliability theory and experiments,the direct tunneling current in lightly-doped drain (LDD) NMOSFET with 1.4 nm gate oxide fabricated by 90 nm complementary metal oxide semiconductor (CMOS) process was studied in depth.High-precision semiconductor parameter analyzer was used to conduct the tests.Law of variation of the direct tunneling (DT) current with channel length,channel width,measuring voltage,drain bias and reverse substrate bias was revealed.The results show that the change of the DT current obeys index law;there is a linear relationship between gate current and channel dimension;drain bias and substrate bias can reduce the gate current.展开更多
Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),consider...Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),considering hetero-gate-dielectric construction,dielectric materials and GaSe stacking pattern.The results show that device performance strongly depends on the dielectric constants and locations of insulators.When highk dielectric is placed close to the drain,it behaves with a larger on-state current(I_(on))of 5052μA/μm when the channel is 5 nm.Additionally,when the channel is 5 nm and insulator is HfO2,the largest I_(on) is 5134μA/μm for devices with AC stacking GaSe channel.In particular,when the gate length is 2 nm,it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used.Hence,the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.展开更多
In this paper the physical characteristics of FINFET (fin-field effect transistor) transistor behavior are investigated. For the analysis, semi-classical electron transfer method was used based on drift diffusion appr...In this paper the physical characteristics of FINFET (fin-field effect transistor) transistor behavior are investigated. For the analysis, semi-classical electron transfer method was used based on drift diffusion approximation by TCAD (Tiber CAD) software. Simulations show that the output resistance of FINFET along very small gate (gate length and fin height of 50 nm) is negative. The negative resistance is used in oscillators.展开更多
Two-dimensional(2D)semiconductors are attractive channels to shrink the scale of field-effect transistors(FETs),and among which the anisotropic one is more advantageous for a higher on-state current(I_(on)).Monolayer(...Two-dimensional(2D)semiconductors are attractive channels to shrink the scale of field-effect transistors(FETs),and among which the anisotropic one is more advantageous for a higher on-state current(I_(on)).Monolayer(ML)SnSe_(2),as an abundant,economic,nontoxic,and stable two-dimensional material,possesses an anisotropic electronic nature.Herein,we study the device performances of the ML SnSe_(2) metal-oxide-semiconductor FETs(MOSFETs)and deduce their performance limit to an ultrashort gate length(L_(g))and ultralow supply voltage(V_(dd))by using the ab initio quantum transport simulation.An ultrahigh I_(on) of 5,660 and 3,145µA/µm is acquired for the n-type 10-nm-L_(g) ML SnSe_(2) MOSFET at V_(dd)=0.7 V for high-performance(HP)and low-power(LP)applications,respectively.Specifically,until L_(g) scales down to 2 and 3 nm,the MOSFETs(at V_(dd)=0.65 V)surpass I_(on),intrinsic delay time(τ),and power-delay product(PDP)of the International Roadmap for Device and Systems(IRDS,2020 version)for HP and LP devices for the year 2028.Moreover,the 5-nm-L_(g) ML SnSe_(2) MOSFET(at V_(dd)=0.4 V)fulfills the IRDS HP device and the 7-nm-L_(g) MOSFET(at V_(dd)=0.55 V)fulfills the IRDS LP device for the year 2034.展开更多
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX02305
文摘The fabrication and characterization of 1700 V 7 A 4H-SiC vertical double-implanted metal-oxide-semiconductor field-effect transistors (VDMOSFETs) are reported. The drift layer is 17μm in thickness with 5 × 10^15 cm^-3 n-type doping, and the channel length is 1μm. The MOSFETs show a peak mobility of 17cm2/V.s and a typical threshold voltage of 3 V. The active area of 0.028cm2 delivers a forward drain current of 7A at Vcs = 22 V and VDS= 15 V. The specific on-resistance (Ron,sv) is 18mΩ.cm2 at VGS= 22 V and the blocking voltage is 1975 V (IDS 〈 lOOnA) at VGS = 0 V.
基金The National Natural Science Foundation of China(No.61604038)China Postdoctoral Science Foundation(No.2015M580376)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20160691)Jiangsu Postdoctoral Science Foundation(No.1501010A)
文摘A novel simulation program with an integrated circuit emphasis(SPICE) model developed for trench-gate metal-oxide-semiconductor field-effect transistor(M OSFET)devices is proposed. The drift region resistance was modeled according to the physical characteristics and the specific structure of the trench-gate MOSFET device. For the accurate simulation of dynamic characteristics, three important capacitances, gate-to-drain capacitance Cgd, gate-to-source capacitance Cgsand drain-to-source capacitance Cds, were modeled, respectively, in the proposed model. Furthermore,the self-heating effect, temperature effect and breakdown characteristic were taken into account; the self-heating model and breakdown model were built in the proposed model; and the temperature parameters of the model were revised. The proposed model is verified by experimental results, and the errors between measured data and simulation results of the novel model are less than 5%. Therefore, the model can give an accurate description for both the static and dynamic characteristics of the trench-gate MOSFET device.
基金Project supported by the National Defence Pre-research Foundation of China (Grant Nos. 51308040203,9140A08060407DZ0103,and 6139801)
文摘Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor (PMOSFET), analytical expressions of the threshold voltages for buried channel and surface channel are presented. And the maximum allowed thickness of s-Si is given, which can ensure that the strong inversion appears earlier in the buried channel (compressive strained SiGe) than in the surface channel (tensile strained Si), because the hole mobility in the buried channel is higher than that in the surface channel. Thus they offer a good accuracy as compared with the results of device simulator ISE. With this model, the variations of threshold voltage and maximum allowed thickness of s-Si with design parameters can be predicted, such as Ge fraction, layer thickness, and doping concentration. This model can serve as a useful tool for p-channel s-Si/s-SiGe/Si1-yGey metal-oxide-semiconductor field-effect transistor (MOSFET) designs.
文摘Growing a silicon(Si) layer on top of stacked Si-germanium(Ge) compressive layer can introduce a tensile strain on the former, resulting in superior device characteristics. Such a structure can be used for high performance complementary metal-oxide-semiconductor(CMOS) circuits. Down scaling metal-oxide-semiconductor field-effect transistors(MOSFETs) into the deep submicron/nanometer regime forces the source(S) and drain(D) series resistance to become comparable with the channel resistance and thus it cannot be neglected. Owing to the persisting technological importance of strained Si devices, in this work, we propose a multi-iterative technique for evaluating the performance of strained-Si/strained-Si_(1-y)Ge_y/relaxed-Si_(1-x)Ge_x MOSFETs and its related circuits in the presence of S/D series resistance, leading to the development of a simulator that can faithfully plot the performance of the device and related digital circuits. The impact of strain on device/circuit performance is also investigated with emphasis on metal gate and high-k dielectric materials.
基金Project(61074051)supported by the National Natural Science Foundation of ChinaProject(10C0709)supported by the Scientific Research Fund of Education Department of Hunan Province,ChinaProject(2011GK3058)supported by the Science and Technology Plan of Hunan Province,China
文摘As dimensions of the metal-oxide-semiconductor field-effect transistor (MOSFET) are scaling down and the thickness of gate oxide is decreased,the gate leakage becomes more and more prominent and has been one of the most important limiting factors to MOSFET and circuits lifetime.Based on reliability theory and experiments,the direct tunneling current in lightly-doped drain (LDD) NMOSFET with 1.4 nm gate oxide fabricated by 90 nm complementary metal oxide semiconductor (CMOS) process was studied in depth.High-precision semiconductor parameter analyzer was used to conduct the tests.Law of variation of the direct tunneling (DT) current with channel length,channel width,measuring voltage,drain bias and reverse substrate bias was revealed.The results show that the change of the DT current obeys index law;there is a linear relationship between gate current and channel dimension;drain bias and substrate bias can reduce the gate current.
基金supported by the National Natural Science Foundation of China(Grants Nos.12374070 and 12074103)the Foundation for University Key Young Teacher of Henan(Grant No.2023GGJS035)+2 种基金Henan Province Postdoctoral Project Launch Funding(Grant No.5201029430112)the Science and Technology Program of Henan(Grant No.232102230080)supported by the High Performance Computing Center of Henan Normal University.
文摘Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),considering hetero-gate-dielectric construction,dielectric materials and GaSe stacking pattern.The results show that device performance strongly depends on the dielectric constants and locations of insulators.When highk dielectric is placed close to the drain,it behaves with a larger on-state current(I_(on))of 5052μA/μm when the channel is 5 nm.Additionally,when the channel is 5 nm and insulator is HfO2,the largest I_(on) is 5134μA/μm for devices with AC stacking GaSe channel.In particular,when the gate length is 2 nm,it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used.Hence,the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.
文摘In this paper the physical characteristics of FINFET (fin-field effect transistor) transistor behavior are investigated. For the analysis, semi-classical electron transfer method was used based on drift diffusion approximation by TCAD (Tiber CAD) software. Simulations show that the output resistance of FINFET along very small gate (gate length and fin height of 50 nm) is negative. The negative resistance is used in oscillators.
基金the Beijing Natural Science Foundation of China(No.4212046)the National Natural Science Foundation of China(Nos.11704008 and 91964101)+1 种基金the Support Plan of Yuyou Youththe fund of high-level characteristic research direction from North China University of Technology.
文摘Two-dimensional(2D)semiconductors are attractive channels to shrink the scale of field-effect transistors(FETs),and among which the anisotropic one is more advantageous for a higher on-state current(I_(on)).Monolayer(ML)SnSe_(2),as an abundant,economic,nontoxic,and stable two-dimensional material,possesses an anisotropic electronic nature.Herein,we study the device performances of the ML SnSe_(2) metal-oxide-semiconductor FETs(MOSFETs)and deduce their performance limit to an ultrashort gate length(L_(g))and ultralow supply voltage(V_(dd))by using the ab initio quantum transport simulation.An ultrahigh I_(on) of 5,660 and 3,145µA/µm is acquired for the n-type 10-nm-L_(g) ML SnSe_(2) MOSFET at V_(dd)=0.7 V for high-performance(HP)and low-power(LP)applications,respectively.Specifically,until L_(g) scales down to 2 and 3 nm,the MOSFETs(at V_(dd)=0.65 V)surpass I_(on),intrinsic delay time(τ),and power-delay product(PDP)of the International Roadmap for Device and Systems(IRDS,2020 version)for HP and LP devices for the year 2028.Moreover,the 5-nm-L_(g) ML SnSe_(2) MOSFET(at V_(dd)=0.4 V)fulfills the IRDS HP device and the 7-nm-L_(g) MOSFET(at V_(dd)=0.55 V)fulfills the IRDS LP device for the year 2034.