Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p...Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.展开更多
New energy power generation equipment has the characteristics of diurnal, perturbative, seasonal, and periodic power generation, which makes new power optical communication network(POCN) more dynamic and changeable. T...New energy power generation equipment has the characteristics of diurnal, perturbative, seasonal, and periodic power generation, which makes new power optical communication network(POCN) more dynamic and changeable. This is directly reflected in the dynamics of the link risk and service importance of the POCN. In this paper, aiming at the problem of the dynamic importance of service in POCN, and the resulting power optical communication network reliability decline problem, a new energy POCN dynamic routing intelligence algorithm based on service importance prediction is proposed. Based on the short-term power generation of new energy power station, the importance of each service and the risk degree of each link are predicted. Link weights are dynamically adjusted, and k-shortest path(KSP) algorithm is used to calculate route results. When network resources are insufficient, low-importance services can give way to prevent a large number of high-importance services from being blocked. Simulation results show that compared with the traditional KSP algorithm, the prediction-based dynamic routing intelligent(P-DRI) algorithm can reduce the service blocking probability by 55.59%, and reduce the average importance of blocking services by 44.77% at the cost of about 6.17% of the calculation delay.展开更多
在新型电力系统中,亟待深度挖掘需求侧资源以提升系统灵活性和新能源消纳能力。在“新基建”背景下,5G基站作为一种新型需求侧资源正迅速发展。研究如何在保证基站备用需求的前提下,由铁塔公司组建含大规模5G基站的虚拟电厂(virtual pow...在新型电力系统中,亟待深度挖掘需求侧资源以提升系统灵活性和新能源消纳能力。在“新基建”背景下,5G基站作为一种新型需求侧资源正迅速发展。研究如何在保证基站备用需求的前提下,由铁塔公司组建含大规模5G基站的虚拟电厂(virtual power plant,VPP)并常态化参与需求响应。首先,提出了考虑储能动态备用容量的5G基站运行可行域构建方法,建立了5G基站VPP的聚合模型。然后,建立了5G基站VPP响应负荷准线的日前优化模型,提出了适合对大规模5G基站进行协调控制的日内解聚合方法。最后,建立了含高比例新能源的区域电网仿真算例。仿真结果表明,聚合大规模基站参与准线型需求响应,可以显著降低5G基站的运行成本,同时提高电网的新能源消纳能力。展开更多
为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电...为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电压数学模型,发现MRSCR与暂态过电压呈负相关性;然后,综合考虑MRSCR与其他影响系统暂态过电压的关键因素,构建多维输入特征集;最后,通过卷积神经网络建立输入特征与暂态过电压的高维映射,实现系统暂态过电压风险的快速、准确评估,并通过算例分析验证了所提方法的有效性、可行性。展开更多
基金funded by Major Science and Technology Projects in Gansu Province(19ZD2GA003).
文摘Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.
基金supported by the National Natural Science Foundation of China(62021005).
文摘New energy power generation equipment has the characteristics of diurnal, perturbative, seasonal, and periodic power generation, which makes new power optical communication network(POCN) more dynamic and changeable. This is directly reflected in the dynamics of the link risk and service importance of the POCN. In this paper, aiming at the problem of the dynamic importance of service in POCN, and the resulting power optical communication network reliability decline problem, a new energy POCN dynamic routing intelligence algorithm based on service importance prediction is proposed. Based on the short-term power generation of new energy power station, the importance of each service and the risk degree of each link are predicted. Link weights are dynamically adjusted, and k-shortest path(KSP) algorithm is used to calculate route results. When network resources are insufficient, low-importance services can give way to prevent a large number of high-importance services from being blocked. Simulation results show that compared with the traditional KSP algorithm, the prediction-based dynamic routing intelligent(P-DRI) algorithm can reduce the service blocking probability by 55.59%, and reduce the average importance of blocking services by 44.77% at the cost of about 6.17% of the calculation delay.
文摘在新型电力系统中,亟待深度挖掘需求侧资源以提升系统灵活性和新能源消纳能力。在“新基建”背景下,5G基站作为一种新型需求侧资源正迅速发展。研究如何在保证基站备用需求的前提下,由铁塔公司组建含大规模5G基站的虚拟电厂(virtual power plant,VPP)并常态化参与需求响应。首先,提出了考虑储能动态备用容量的5G基站运行可行域构建方法,建立了5G基站VPP的聚合模型。然后,建立了5G基站VPP响应负荷准线的日前优化模型,提出了适合对大规模5G基站进行协调控制的日内解聚合方法。最后,建立了含高比例新能源的区域电网仿真算例。仿真结果表明,聚合大规模基站参与准线型需求响应,可以显著降低5G基站的运行成本,同时提高电网的新能源消纳能力。
文摘为解决电力系统暂态过电压风险评估中输入特征集构建合理性不足、强相关性差等问题,提出一种考虑新能源多场站短路比MRSCR(multiple renewable energy stations short circuit ratio)的暂态过电压风险评估方法。首先,通过分析暂态过电压数学模型,发现MRSCR与暂态过电压呈负相关性;然后,综合考虑MRSCR与其他影响系统暂态过电压的关键因素,构建多维输入特征集;最后,通过卷积神经网络建立输入特征与暂态过电压的高维映射,实现系统暂态过电压风险的快速、准确评估,并通过算例分析验证了所提方法的有效性、可行性。