In order to realize reliable and fast simulation of FWM power evaluation, USSD (Uniform Step-Size Distribution) method is modified and its corresponding simulation results of FWM efficiency and computational time are ...In order to realize reliable and fast simulation of FWM power evaluation, USSD (Uniform Step-Size Distribution) method is modified and its corresponding simulation results of FWM efficiency and computational time are presented.展开更多
We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical ...We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical lens group with different focus lengths. The bare fibers were mechanically bundled through high temperature ultraviolet adhesive after the coatings of the 127 fibers were stripped. The diameter of the fiber bundle was 6 mm. The total output power of such a bundle was 152 W with electro-optical conversion efficiency of 27.56%and the RMS power instability was less than ±1% within 3 h.展开更多
文摘In order to realize reliable and fast simulation of FWM power evaluation, USSD (Uniform Step-Size Distribution) method is modified and its corresponding simulation results of FWM efficiency and computational time are presented.
基金Project supported by the Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing the National High Technology Research and Development Program of China(No.2014AA032607)+1 种基金the National Natural Science Foundation of China(Nos.61404135,61405186,61308032,61308033)the National Key R&D Program of China(Nos.2016YFB0401804,2016YFB0402002)
文摘We demonstrate a high-power blue diode laser operated at 447 nm combining laser diodes using an optical fiber bundle. As many as 127 diode lasers at 447 nm were coupled into 400 μm/0.22 NA fibers using an aspherical lens group with different focus lengths. The bare fibers were mechanically bundled through high temperature ultraviolet adhesive after the coatings of the 127 fibers were stripped. The diameter of the fiber bundle was 6 mm. The total output power of such a bundle was 152 W with electro-optical conversion efficiency of 27.56%and the RMS power instability was less than ±1% within 3 h.