期刊文献+
共找到364篇文章
< 1 2 19 >
每页显示 20 50 100
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
1
作者 Xiaoyun Deng Yongdong Chen +2 位作者 Dongchuan Fan Youbo Liu Chao Ma 《Global Energy Interconnection》 EI CSCD 2024年第2期117-129,共13页
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in... In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort. 展开更多
关键词 Residential virtual power plant Residential distributed energy resource Constrained soft actor-critic Fully distributed scheduling strategy
下载PDF
Virtual Power Plants for Grid Resilience: A Concise Overview of Research and Applications
2
作者 Yijing Xie Yichen Zhang +2 位作者 Wei-Jen Lee Zongli Lin Yacov A.Shamash 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期329-343,共15页
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng... The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience. 展开更多
关键词 Climate change renewable energy resources RESILIENCE smart grids virtual power plants(VPPs)
下载PDF
Proposal of a Deuterium-Deuterium Fusion Reactor Intended for a Large Power Plant
3
作者 Patrick Lindecker 《World Journal of Nuclear Science and Technology》 CAS 2024年第1期1-58,共58页
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid... This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any. 展开更多
关键词 Fusion Reactor Deuterium-Deuterium Reactor Catalyzed D-D Colliding Beams Stellarator Reactor power plant
下载PDF
Increasing the Efficiency and Level of Environmental Safety of Pro-Environmental City Heat Supply Technologies by Low Power Nuclear Plants
4
作者 Vladimir Kravchenko Igor Kozlov +3 位作者 Volodymyr Vashchenko Iryna Korduba Andrew Overchenko Serhii Tsybytovskyi 《World Journal of Nuclear Science and Technology》 CAS 2024年第2期107-117,共11页
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ... In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers. 展开更多
关键词 Low-Capacity Nuclear power plants Environmental Friendliness of the Thermal power Generation Mode Heat Generation Condensation Mode Heat Supply
下载PDF
Seasonal Performance of Solar Power Plants in the Sahel Region: A Study in Senegal, West Africa
5
作者 Serigne Abdoul Aziz Niang Mamadou Simina Drame +4 位作者 Astou Sarr Mame Diarra Toure Ahmed Gueye Seydina Oumar Ndiaye Kharouna Talla 《Smart Grid and Renewable Energy》 2024年第2期79-97,共19页
The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significa... The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significant yields are recorded in spring, autumn and winter, with values ranging from 5 to 7.51 kWh/kWp/day for the reference yield and 4.02 to 7.58 kWh/kWp/day for the final yield. These fluctuations are associated with intense solar activity during the dry season and clear skies, indicating peak production. Conversely, minimum values are recorded during the rainy season from June to September, with a final yield of 3.86 kWh/kW/day due to dust, clouds and high temperatures. The performance ratio analysis shows seasonal dynamics throughout the year with rates ranging from 77.40% to 95.79%, reinforcing reliability and optimal utilization of installed capacity. The results of the capacity factor vary significantly, with March, April, May, and sometimes October standing out as periods of optimal performance, with 16% for Kahone, 16% for Bokhol, 18% for Malicounda and 23% for Sakal. Total losses from solar power plants show similar seasonal trends standing out for high loss levels from June to July, reaching up to 3.35 kWh/kWp/day in June. However, using solar trackers at Sakal has increased production by up to 25%, demonstrating the operational stability of this innovative technology compared with the plants fixed panel. Finally, comparing these results with international studies confirms the outstanding efficiency of Senegalese solar power plants, other installations around the world. 展开更多
关键词 Performance Study Photovoltaic power plant Season Variations Senegal
下载PDF
Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response
6
作者 Shiwei Su Guangyong Hu +2 位作者 Xianghua Li Xin Li Wei Xiong 《Energy Engineering》 EI 2023年第10期2343-2368,共26页
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t... As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions. 展开更多
关键词 Virtual power plant cluster carbon quota interaction electricity interaction integrated demand response user comprehensive satisfaction coordinated optimal operation
下载PDF
Solar Power Plant Network Packet-Based Anomaly Detection System for Cybersecurity
7
作者 Ju Hyeon Lee Jiho Shin Jung Taek Seo 《Computers, Materials & Continua》 SCIE EI 2023年第10期757-779,共23页
As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,wit... As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants. 展开更多
关键词 Renewable energy solar power plant cyber threat CYBERSECURITY anomaly detection machine learning network packet
下载PDF
PSA study of the effect of extreme snowfall on a floating nuclear power plant:case study in the Bohai Sea
8
作者 Lan‑Xin Gong Qing‑Zhu Liang Chang‑Hong Peng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期212-225,共14页
This study presents a probabilistic safety analysis(PSA)method for the external event of extreme snowfall on a floating nuclear power plant(FNPP)deployed in the Bohai Sea.We utilized the Weibull and Gumbel extreme val... This study presents a probabilistic safety analysis(PSA)method for the external event of extreme snowfall on a floating nuclear power plant(FNPP)deployed in the Bohai Sea.We utilized the Weibull and Gumbel extreme value distributions to fit the collected meteorological data and obtained a hazard curve for the event of an extreme snowfall where the FNPP is located,providing a basis for the frequency of extreme snowfall-initiating events.Our analysis indicates that extreme snowfall primarily affects the ventilation openings of the equipment,leading to the failure of devices such as the diesel generators.Additionally,extreme snowfall can result in a loss of off-site power(LOOP).Therefore,the developed extreme snowfall PSA model is mainly based on the LOOP event tree,considering responses such as snowfall removal by personnel.Our calculations indicate a core damage frequency(CDF)of 1.13×10^(-10) owing to extreme snowfall,which is relatively low.The results of the cut-set analysis indicate that valve failures in the core makeup tank(CMT),passive residual heat removal system(PRS),and in-containment refueling water storage tank(IRWST)significantly contribute to the CDF. 展开更多
关键词 Floating nuclear power plant(FNPP) ACP100 Extreme snow PSA External hazard
下载PDF
Simulation of Vertical Solar Power Plants with Different Turbine Blades
9
作者 Yuxing Yang Peng Zhang Meng Lv 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1397-1409,共13页
The performances of turbine blades have a significant impact on the energy conversion efficiency of vertical solar power plants.In the present study,such a relationship is assessed by considering two kinds of airfoil ... The performances of turbine blades have a significant impact on the energy conversion efficiency of vertical solar power plants.In the present study,such a relationship is assessed by considering two kinds of airfoil blades,designed by using the Wilson theory.In particular,numerical simulations are conducted using the SST K−ω model and assuming a wind speed of 3–6 m/s and seven or eight blades.The two airfoils are the NACA63121(with a larger chord length)and the AMES63212;It is shown that the torsion angle of the former is smaller,and its wind drag ratio is larger;furthermore,the resistance is increased by about 66.3%on average.Within the scope of the study,the results show that the NACA63212 airfoil is better than the AMES63212 airfoil in terms of power,with an average improvement of about 2.8%.The simulation results have a certain guiding significance for selecting turbine blade airfoils and improving turbine efficiency. 展开更多
关键词 Vertical solar power plant wilson theory airfoil modification numerical simulation chord length torsion angle
下载PDF
Evaporative Cooling Applied in Thermal Power Plants:A Review of the State-ofthe-Art and Typical Case Studies
10
作者 Tiantian Liu Huimin Pang +7 位作者 Suoying He Bin Zhao Zhiyu Zhang Jucheng Wang Zhilan Liu Xiang Huang Yuetao Shi Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2229-2265,共37页
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo... A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption. 展开更多
关键词 Direct evaporative cooling cooling tower cooling performance wet media nozzle spray thermal power plants
下载PDF
Development and Research of Non⁃Stirring Conveying Device for Waste Resin in Nuclear Power Plant
11
作者 Jianfa Li Yongzhen Hua +2 位作者 Mingmei Liu Rui Zhang Taishan Lou 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第3期45-59,共15页
Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transp... Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transport concentration and easy blockage of conveying equipment and pipelines in nuclear power plants in China,a set of non⁃stirring conveying devices is developed,and theoretical calculations,simulation analysis and experimental verification are carried out.By transporting resin using the no stirring conveying device developed in this paper,it is not only to eliminate the risk of blockage and ensure the safety of transportation,but also to adjust the concentration of conveying resin to change the transport efficiency according to the operating conditions.The effective bearing rate of waste resin storage tank can be improved,so that the comprehensive performance of waste resin storage and transportation in nuclear power plants can be greatly improved. 展开更多
关键词 nuclear power plant ion exchange resin TRANSPORTATION no stirring device no blockage
下载PDF
Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game
12
作者 Jingjing Bai Hongyi Zhou +1 位作者 Zheng Xu Yu Zhong 《Energy Engineering》 EI 2023年第5期1163-1183,共21页
The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be furth... The current electricity market fails to consider the energy consumption characteristics of transaction subjects such as virtual power plants.Besides,the game relationship between transaction subjects needs to be further explored.This paper proposes a Peer-to-Peer energy trading method for multi-virtual power plants based on a non-cooperative game.Firstly,a coordinated control model of public buildings is incorporated into the scheduling framework of the virtual power plant,considering the energy consumption characteristics of users.Secondly,the utility functions of multiple virtual power plants are analyzed,and a non-cooperative game model is established to explore the game relationship between electricity sellers in the Peer-to-Peer transaction process.Finally,the influence of user energy consumption characteristics on the virtual power plant operation and the Peer-to-Peer transaction process is analyzed by case studies.Furthermore,the effect of different parameters on the Nash equilibrium point is explored,and the influence factors of Peer-to-Peer transactions between virtual power plants are summarized.According to the obtained results,compared with the central air conditioning set as constant temperature control strategy,the flexible control strategy proposed in this paper improves the market power of each VPP and the overall revenue of the VPPs.In addition,the upper limit of the service quotation of the market operator have a great impact on the transaction mode of VPPs.When the service quotation decreases gradually,the P2P transaction between VPPs is more likely to occur. 展开更多
关键词 Virtual power plant PEER-TO-PEER energy trading public building non-cooperative game
下载PDF
Off-Design Simulation of a CSP Power Plant Integrated with aWaste Heat Recovery System
13
作者 T.E.Boukelia A.Bourouis +1 位作者 M.E.Abdesselem M.S.Mecibah 《Energy Engineering》 EI 2023年第11期2449-2467,共19页
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola... Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant. 展开更多
关键词 Dispatch capacity organic Rankine cycle parabolic trough solar power plant PERFORMANCES waste heat recovery
下载PDF
Problems of Hazardous Waste Storage Facilities in Coal-fired Power Plants and Countermeasures
14
作者 Wenqi YUE 《Meteorological and Environmental Research》 CAS 2023年第2期57-60,65,共5页
The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The enviro... The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems. 展开更多
关键词 Coal-fired power plants Hazardous waste storage Types of problems COUNTERMEASURES
下载PDF
Study of the Impact of Grid Disconnections on the Production of a Photovoltaic Solar Power Plant: Case of Diamniadio Power Plant
15
作者 Amadou Ndiaye Mohamed Cherif Aidara +1 位作者 Amy Mbaye Mamadou Lamine Ndiaye 《Journal of Power and Energy Engineering》 2023年第6期16-25,共10页
Today, renewable energy projects connected to the interconnected network, with powers of the order of tens of megawatts, are more and more numerous in sub-Saharan Africa. And financing these investments requires a rel... Today, renewable energy projects connected to the interconnected network, with powers of the order of tens of megawatts, are more and more numerous in sub-Saharan Africa. And financing these investments requires a reliable amortization schedule. In the context of photovoltaic systems connected to the interconnected electricity grid, the quintessence of damping is the amount of energy injected into the grid. Thus it is fundamental to know the parameters of this network and their variation. This paper presents an evaluation of the impact of power grid disturbances on the performance of a solar PV plant under real conditions. The CICAD photovoltaic solar plant, connected to the Senelec distribution network, with an installed capacity of 2 MWp is the study setting. An energy audit of the plant is carried out. Then the percentage of each loss is determined: voltage drops, module degradation, inverter efficiency. The duration of each disconnection is measured and recorded daily. The corresponding quantity of lost energy is thus calculated from meteorological data (irradiation, temperature, wind speed, illumination) recorded by the measurement unit in one-minute steps. The observation period is three months. The total duration of disconnections related to the instability of the electrical network during the study period is 46.7 hours. The amount of energy lost is estimated at 22.6 MWh. This represents 2.4% of the actual calculated production. 展开更多
关键词 Photovoltaic power plant Disconnections Network Evaluation Lost En-ergy
下载PDF
Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation
16
作者 Yan Shi Wenjie Li +2 位作者 Gongbo Fan Luxi Zhang Fengjiu Yang 《Energy Engineering》 EI 2024年第2期461-482,共22页
Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c... Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach. 展开更多
关键词 Integrated energy system carbon capture power plant confidence interval optimized scheduling
下载PDF
Steady-State Analysis of Grid-Connected New Energy Power Plants
17
作者 Zhichao Zhang 《Journal of Architectural Research and Development》 2023年第2期64-71,共8页
In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,... In order to ease the fossil energy crunch,new energy sources need to be fully utilized.Clean energy sources such as wind,light,and nuclear energy are important tools to solve environmental and energy problems.However,in the process of researching new energy farms,there are some problems when they are integrated into the power system.In order to ensure the stability of new energy power plants,it is necessary to conduct an in-depth analysis of the grid connection technology of new energy farms.In the study,it is necessary to learn about the specific problems of the stability of the grid connection of new energy power plants,and to clarify the specific application of the grid connection technology of new energy power plants from the application principle and advantages of the grid connection technology of new energy power plants.Through simulation experiments,the positive effect of grid connection technology of new energy power plants in improving the stability of power systems was determined. 展开更多
关键词 New energy power plant Grid connection technology Online publication:March 31 2023
下载PDF
A Consideration on Increasing Current Density in Normal Conducting Toroidal Field Coil for Spherical Tokamak Power Plant
18
作者 宋云涛 西尾敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第2期2731-2733,共3页
The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying ... The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T-15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant. 展开更多
关键词 low aspect ratio tokamak power plant toroidal field coil center post high magnetic field
下载PDF
Optimal Portfolio Selection of Wind Power Plants Using a Stochastic Risk-Averse Optimization Model, Considering the Wind Complementarity of the Sites and a Budget Constraint
19
作者 Luiz A. S. Camargo Laís D. Leonel +1 位作者 Pedro S. Rosa Dorel S. Ramos 《Energy and Power Engineering》 2020年第8期459-476,共18页
This work focuses on the best financial resources allocation to define a wind power plant portfolio, considering a set of feasible sites. To accomplish the problem formulation and solution, the first step was to estab... This work focuses on the best financial resources allocation to define a wind power plant portfolio, considering a set of feasible sites. To accomplish the problem formulation and solution, the first step was to establish a long-term wind series reconstruction methodology for generating scenarios of wind energy, applying it to study five different locations of the Brazilian territory. Secondly, a risk-averse stochastic optimization model was implemented and used to define the optimal wind power plant selection </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> maximize</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the portfolio financial results, considering an investment budget constraint. In a sequence, a case study was developed to illustrate a practical situation of applying the methodology to the portfolio selection problem, considering five wind power plant</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> options. </span><span style="font-family:Verdana;">The case</span><span style="font-family:Verdana;"> study was supported by the proposed optimization model, using the scenarios of generation created by the reconstruction methodology. The obtained results show the model performance in terms of defining the best financial resources allocation considering the effect of the complementarity between sites, making it feasible to select the optimal set of wind power plants, characterizing a wind plant optimal portfolio that takes into account the budget constraint. The adopted methodology makes it possible to realize that the diversification of the portfolio depends on the investor risk aversion. Although applied to the Brazilian case, this model can be customized to solve a similar problem worldwide. 展开更多
关键词 Wind power plant Portfolio Selection Risk Aversion Stochastic Optimiza-tion
下载PDF
Monte Carlo Simulation of a Combined-Cycle Power Plant Considering Ambient Temperature Fluctuations
20
作者 Amir Hossein Jafari Yeganeh Ali Behbahaninia Parastoo Ghadamabadi 《Journal of Power and Energy Engineering》 2022年第5期116-131,共16页
A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambi... A combined-cycle power plant (CCPP) is broadly utilized in many countries to cover energy demand due to its higher efficiency than other conventional power plants. The performance of a CCPP is highly sensitive to ambient air temperature (AAT) and the generated power varies widely during the year with temperature fluctuations. To have an accurate estimation of power generation, it is necessary to develop a model to predict the average monthly power of a CCPP considering ambient temperature changes. In the present work, the Monte Carlo (MC) method was used to obtain the average generated power of a CCPP. The case study was a combined-cycle power plant in Tehran, Iran. The region’s existing meteorological data shows significant fluctuations in the annual ambient temperature, which severely impact the performance of the mentioned plant, causing a stochastic behavior of the output power. To cope with this stochastic nature, the probability distribution of monthly outdoor temperature for 2020 was determined using the maximum likelihood estimation (MLE) method to specify the range of feasible inputs. Furthermore, the plant was accurately simulated in THERMOFLEX to capture the generated power at different temperatures. The MC method was used to couple the ambient temperature fluctuations to the output power of the plant, modeled by THERMOFLEX. Finally, the mean value of net power for each month and the average output power of the system were obtained. The results indicated that each unit of the system generates 436.3 MW in full load operation. The average deviation of the modeling results from the actual data provided by the power plant was an estimated 3.02%. Thus, it can be concluded that this method helps achieve an estimation of the monthly and annual power of a combined-cycle power plant, which are effective indexes in the economic analysis of the system. 展开更多
关键词 Combined-Cycle power plant Monte Carlo Method Ambient Air Temper-ature Maximum Likelihood Estimation Stochastic Behavior
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部