The difference between circuit design stage and time requirements has broadened with the increasing complexity of the circuit.A big database is needed to undertake important analytical work like statistical method,hea...The difference between circuit design stage and time requirements has broadened with the increasing complexity of the circuit.A big database is needed to undertake important analytical work like statistical method,heat research,and IR-drop research that results in extended running times.This unit focuses on the assessment of test strength.Because of the enormous number of successful designs for currentmodels and the unnecessary time required for every test,maximum energy ratings with all tests cannot be achieved.Nevertheless,test safety is important for producing trustworthy findings to avoid loss of output and harm to the chip.Generally,effective power assessment is only possible in a limited sample of pre-selected experiments.Thus,a key objective is to find the experiments that might give the worst situations again for testing power.It offers a machine-based circuit power estimation(MLCPE)system for the selection of exams.Two distinct techniques of predicting are utilized.Firstly,to find testings with power dissipation,it forecasts the behavior of testing.Secondly,the changemovement and energy data are linked to the semiconductor design,identifying small problem areas.Several types of algorithms are utilized.In particular,the methods compared.The findings show great accuracy and efficiency in forecasting.That enables such methods suitable for selecting the worst scenario.展开更多
In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i...In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.展开更多
High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs...High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.展开更多
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul...High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.展开更多
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc...During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.展开更多
We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underes...We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underestimated by 52 % if thermal effects are omitted. Furthermore, an inconsistency arises when energy and temperature are simultaneously optimized by dynamic voltage scaling. Temperature is a limiting factor for future integrated circuits,and the thermal optimization approach can attain a temperature reduction of up to 12℃ with less than 1.8% energy penalty compared with the energy optimization one.展开更多
This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for man...This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.展开更多
An asymmetry power clock,4 phase power clock supplying the power to the DSCRL(dual swing charge recovery logic) adiabatic circuit is presented.It is much simpler than the 6 phase power clock,symmetry power clock,us...An asymmetry power clock,4 phase power clock supplying the power to the DSCRL(dual swing charge recovery logic) adiabatic circuit is presented.It is much simpler than the 6 phase power clock,symmetry power clock,used in the DSCRL adiabatic circuit.Although the 4 phase power clock is simpler,the DSCRL adiabatic circuit still shows good performance and high efficiency of energy transfer and recovery.This conclusion has been proved by the result of the HSPICE simulation using the 0 6μm CMOS technology.展开更多
To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and intern...To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.展开更多
The downlink energy-efficient transmission schedule with non-ideal circuit power over Wreless networks involving a single transmitter and multiple receivers was investigated. According to the special structure of the ...The downlink energy-efficient transmission schedule with non-ideal circuit power over Wreless networks involving a single transmitter and multiple receivers was investigated. According to the special structure of the problem, a novel algorithm called OOSCPMR (the optimal offine scheduling with non-ideal circuit power for multi-receivers) is proposed, and the optimal offine solutions to optimize the energy- efficient transmission policy are found. The packets to be transmitted can be divided into two types where one type of packet is determined to be transmitted using the enrgy- efficient tansmission time, and the other type of packet is determined by the ID moveright algorithm. Finally, an energy-efficient online schedule is developed based on te proposed OOSCPMR algoriAm. Simulation results show that the optima offline transmission schedule provides te lower bound performance for the online tansmission schedule. The proposed optimal offline and online policy is more energy efficient than the existing schemes tat assume ideal circuit power.展开更多
Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also propose...Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also proposed,which can adjust duty cycle of MOS switch in power clock generator depending on logic complexity and operating frequency to achieve optimum energy efficiency.Closed-form results are derived,which facilitate efficiency-optimized design of the power clock generator.An ERTL PLA and a conventional PLA are designed and simulated on 0.35μm process.The energy efficiency of the proposed power clock generator can reach 77%~85% operating between 20~100MHz.Simulation results indicate that ERTL is a low energy logic.Including power loss of power clock circuits,ERTL PLA still shows 65%~77% power savings compared to conventional PLA.展开更多
The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis....The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.展开更多
Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic...Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.展开更多
First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked...First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure. Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25um CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL) and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.展开更多
This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V proces...This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.展开更多
The incidence chromatic number of G is the least number of colors such that G has an incidence coloring. It is proved that the incidence chromatic number of Cn^p, the p-th power of the circuit graph, is 2p + 1 if and...The incidence chromatic number of G is the least number of colors such that G has an incidence coloring. It is proved that the incidence chromatic number of Cn^p, the p-th power of the circuit graph, is 2p + 1 if and only if n = k(2p + 1), for other cases: its incidence chromatic number is at most 2p + [r/k] + 2, where n = k(p + 1) + r, k is a positive integer. This upper bound is tight for some cases.展开更多
The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the c...The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.展开更多
Based on analyzing significance of controlling clock in design of low power sequential circuits, this paper proposes a technique that the gating signal is derived from the master latch in a flip-flop to make the deriv...Based on analyzing significance of controlling clock in design of low power sequential circuits, this paper proposes a technique that the gating signal is derived from the master latch in a flip-flop to make the derived clock having no glitch and no skew. The design of a decimal counter with half-frequency division shows that by using the synchronous derived clock the counter has lower power dissipation as well as simpler combinational logic. Computer simulation shows 20% power saving.展开更多
With the increase of the clock frequency and silicon integration, power aware computing has become a critical concern in the design of the embedded processor and system-on-chip (SoC). Dynamic voltage scaling (DVS)...With the increase of the clock frequency and silicon integration, power aware computing has become a critical concern in the design of the embedded processor and system-on-chip (SoC). Dynamic voltage scaling (DVS) is an effective method for low-power designs. However, traditional DVS methods have two deficiencies. First, they have a conservative safety margin which is not necessary for most of the time. Second, they are exclusively concerned with the critical stage and ignore the significant potential free slack time of the noncritical stage. These factors lead to a large amount of power waste. In this paper, a novel pipeline structure with ultra-low power consumption is proposed. It cuts off the safety margin and takes use of the noncritical stages at the same time. A prototype pipeline is designed in 0.13 μm technology and analyzed. The result shows that a large amount of energy can be saved by using this structure. Compared with the fixed voltage case, 50% of the energy can be saved, and with respect to the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.展开更多
Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is propose...Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is proposed in this paper. The new topology can correspond to a 90 plus percent of power converting. So,a novel topology of an state of-art integrated circuit, which can be used as power management circuit, has been designed based on the above new topology. A simulator which is specific suitable for the power controller has been founded in this work and it has been used for the simulation of the novel architecture and the proposed integrated circuit.展开更多
基金supported by Dr S Karthik,SRM Institute of Science and TechnologySRM Institute of Science and Technology,Vadapalani Campus,Chennai,Tamilnadu,India。
文摘The difference between circuit design stage and time requirements has broadened with the increasing complexity of the circuit.A big database is needed to undertake important analytical work like statistical method,heat research,and IR-drop research that results in extended running times.This unit focuses on the assessment of test strength.Because of the enormous number of successful designs for currentmodels and the unnecessary time required for every test,maximum energy ratings with all tests cannot be achieved.Nevertheless,test safety is important for producing trustworthy findings to avoid loss of output and harm to the chip.Generally,effective power assessment is only possible in a limited sample of pre-selected experiments.Thus,a key objective is to find the experiments that might give the worst situations again for testing power.It offers a machine-based circuit power estimation(MLCPE)system for the selection of exams.Two distinct techniques of predicting are utilized.Firstly,to find testings with power dissipation,it forecasts the behavior of testing.Secondly,the changemovement and energy data are linked to the semiconductor design,identifying small problem areas.Several types of algorithms are utilized.In particular,the methods compared.The findings show great accuracy and efficiency in forecasting.That enables such methods suitable for selecting the worst scenario.
基金supported by the 2022 Project for Improving the Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities(Grant No.2022KY0209).
文摘In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.
基金financially supported by the National Science and Technology Major Project(No.2016ZX05034004)。
文摘High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks(No.SGNR0000KJJS2302137)the National Natural Science Foundation of China(Grant No.62203248)the Natural Science Foundation of Shandong Province(Grant No.ZR2020ME194).
文摘High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.
基金This article was supported by the general project“Research on Wind and Photovoltaic Fault Characteristics and Practical Short Circuit Calculation Model”(521820200097)of Jiangxi Electric Power Company.
文摘During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems.
文摘We propose a novel thermal-conscious power model for integrated circuits that can accurately predict power and temperature under voltage scaling. Experimental results show that the leakage power consumption is underestimated by 52 % if thermal effects are omitted. Furthermore, an inconsistency arises when energy and temperature are simultaneously optimized by dynamic voltage scaling. Temperature is a limiting factor for future integrated circuits,and the thermal optimization approach can attain a temperature reduction of up to 12℃ with less than 1.8% energy penalty compared with the energy optimization one.
文摘This paper presents an efficient algorithm for reducing RLC power/ground network complexities by exploitation of the regularities in the power/ground networks. The new method first builds the equivalent models for many series RLC-current chains based on their Norton's form companion models in the original networks,and then the precondition conjugate gradient based iterative method is used to solve the reduced networks,which are symmetric positive definite. The solutions of the original networks are then back solved from those of the reduced networks.Experimental results show that the complexities of reduced networks are typically significantly smaller than those of the original circuits, which makes the new algorithm extremely fast. For instance, power/ground networks with more than one million branches can be solved in a few minutes on modern Sun workstations.
文摘An asymmetry power clock,4 phase power clock supplying the power to the DSCRL(dual swing charge recovery logic) adiabatic circuit is presented.It is much simpler than the 6 phase power clock,symmetry power clock,used in the DSCRL adiabatic circuit.Although the 4 phase power clock is simpler,the DSCRL adiabatic circuit still shows good performance and high efficiency of energy transfer and recovery.This conclusion has been proved by the result of the HSPICE simulation using the 0 6μm CMOS technology.
文摘To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.
基金The National Natural Science Foundation of China(No.61571123,61521061)the National Science and Technology Major Project(No.2016ZX03001011-005)+1 种基金the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017A03)Qing Lan Project
文摘The downlink energy-efficient transmission schedule with non-ideal circuit power over Wreless networks involving a single transmitter and multiple receivers was investigated. According to the special structure of the problem, a novel algorithm called OOSCPMR (the optimal offine scheduling with non-ideal circuit power for multi-receivers) is proposed, and the optimal offine solutions to optimize the energy- efficient transmission policy are found. The packets to be transmitted can be divided into two types where one type of packet is determined to be transmitted using the enrgy- efficient tansmission time, and the other type of packet is determined by the ID moveright algorithm. Finally, an energy-efficient online schedule is developed based on te proposed OOSCPMR algoriAm. Simulation results show that the optima offline transmission schedule provides te lower bound performance for the online tansmission schedule. The proposed optimal offline and online policy is more energy efficient than the existing schemes tat assume ideal circuit power.
文摘Energy recovery threshold logic (ERTL) is proposed,which combines threshold logic with adiabatic approach.ERTL achieves low energy as well as low gate complexity.A high efficiency power clock generator is also proposed,which can adjust duty cycle of MOS switch in power clock generator depending on logic complexity and operating frequency to achieve optimum energy efficiency.Closed-form results are derived,which facilitate efficiency-optimized design of the power clock generator.An ERTL PLA and a conventional PLA are designed and simulated on 0.35μm process.The energy efficiency of the proposed power clock generator can reach 77%~85% operating between 20~100MHz.Simulation results indicate that ERTL is a low energy logic.Including power loss of power clock circuits,ERTL PLA still shows 65%~77% power savings compared to conventional PLA.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016902)the National Nature Science Foundation of China(Grant Nos.61435013,61405188,and 61627820)
文摘The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.
文摘Flow accelerated corrosion(FAC) is the main failure cause of the secondary circuit carbon steel piping in nuclear power plants.The piping failures caused by FAC have resulted in numerous unplanned outages and tragic fatalities.The existing researches focus on the main factors contributing to FAC,which include metallurgical factors,environmental factors and hydrodynamic factors. Some effective FAC management methods and programs with long term monitoring and inspection data analysis are recommended.But a comprehensive FAC management system should be developed in order to mitigate and manage FAC systematically.In this paper,the FAC influencing factors are analyzed in combination with the operating conditions of the secondary circuit piping in the Third Qinshan Nuclear Power Plant(TQNPP),China(Third Qinshan Nuclear Power Company Limited,China).A comprehensive FAC mitigation and management system is developed for TQNPP secondary circuit piping.The system is composed of five processes,viz.materials substitution,water chemical optimization,long-term monitor strategy for the susceptible piping,integrity evaluation of the local thinning defects,and repair or replacement.With the implementation of the five processes,the material of FAC sensitive pipe fittings are modified from carbon steel to stainless steel,N_2H_4 and NH_3 are finally selected as the water chemical regulator of secondary circuit,the secondary circuit pips are classified according to FAC susceptibility in order to conduct long term monitoring strategy,and an integrity evaluation flow for local thinning caused by FAC in carbon steel piping is developed.If the component with local thinning defects is not fit-for-service,corresponding repair or replacement should be conducted.The comprehensive FAC mitigation and management system with five interrelated processes would be a cost-effective method of increasing personnel safety,plant safety and availability.
基金Supported by the National Natural Science Foundation of China (No. 60273093)the Natural Science Foundation of Zhejinag Province(No. Y104135) the Student Sci-entific Research Foundation of Ningbo university (No.C38).
文摘First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure. Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25um CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL) and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.
文摘This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.
基金Supported by NSFC(10201022,10571124,10726008)Supported by SRCPBMCE(KM200610028002)Supported by BNSF(1012003)
文摘The incidence chromatic number of G is the least number of colors such that G has an incidence coloring. It is proved that the incidence chromatic number of Cn^p, the p-th power of the circuit graph, is 2p + 1 if and only if n = k(2p + 1), for other cases: its incidence chromatic number is at most 2p + [r/k] + 2, where n = k(p + 1) + r, k is a positive integer. This upper bound is tight for some cases.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 50877039in part by the Tsinghua University Initiative Scientific Research Program under Grant No.20121087927(Corresponding author:Xinjie Yu).
文摘The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.
基金Supported by the NSF of China (# 69773034) and DARPA under contract # F33615-95-C-1627
文摘Based on analyzing significance of controlling clock in design of low power sequential circuits, this paper proposes a technique that the gating signal is derived from the master latch in a flip-flop to make the derived clock having no glitch and no skew. The design of a decimal counter with half-frequency division shows that by using the synchronous derived clock the counter has lower power dissipation as well as simpler combinational logic. Computer simulation shows 20% power saving.
基金supported by the Important National S&T Special Project of China under Grant No.2011ZX01034-002-001-2the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2009J026
文摘With the increase of the clock frequency and silicon integration, power aware computing has become a critical concern in the design of the embedded processor and system-on-chip (SoC). Dynamic voltage scaling (DVS) is an effective method for low-power designs. However, traditional DVS methods have two deficiencies. First, they have a conservative safety margin which is not necessary for most of the time. Second, they are exclusively concerned with the critical stage and ignore the significant potential free slack time of the noncritical stage. These factors lead to a large amount of power waste. In this paper, a novel pipeline structure with ultra-low power consumption is proposed. It cuts off the safety margin and takes use of the noncritical stages at the same time. A prototype pipeline is designed in 0.13 μm technology and analyzed. The result shows that a large amount of energy can be saved by using this structure. Compared with the fixed voltage case, 50% of the energy can be saved, and with respect to the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.
文摘Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is proposed in this paper. The new topology can correspond to a 90 plus percent of power converting. So,a novel topology of an state of-art integrated circuit, which can be used as power management circuit, has been designed based on the above new topology. A simulator which is specific suitable for the power controller has been founded in this work and it has been used for the simulation of the novel architecture and the proposed integrated circuit.